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Variography is an excellent tool for monitoring the long-range trend of continuous processes. Pierre 
Gy has presented a method that can be used for estimating the measurement variance of a lot mean 
as function of sampling frequency for different sampling modes: random, stratified, and systematic 
sample selections. The method involves the estimation of the intercept (also called the nugget effect) 
of the variogram at the time point zero, and numerical integration of the variogram. The method can 
also be used for optimising sampling plans. At the time when variography was developed on-line 
analysers were not available. Samples were extracted from the process streams and analysed in 
laboratories. It was important to optimise the sampling plans to control the analytical costs and the 
reliability of the plans in estimating the estimation error. For a reliable variogram more than thirty to 
forty samples had to be analysed. Consequently, the results could not be used on-line. 

Currently process analysers are widely used to monitor continuous processes. Like in variographic 
estimation of the lot mean this method is based on the theory of stratified sampling. If the lot is 
divided into N1 strata of equal sizes (or sublots) of which n1 are sampled the variance of the lot mean 
aL is 

𝒔𝒔𝒂𝒂𝑳𝑳𝟐𝟐 � 𝑵𝑵𝟏𝟏 � 𝒏𝒏𝟏𝟏
𝑵𝑵𝟏𝟏 � 𝟏𝟏 ∙ 𝒔𝒔𝟏𝟏

𝟐𝟐

𝒏𝒏𝟏𝟏 �
𝑵𝑵𝟐𝟐 � 𝒏𝒏𝟐𝟐
𝑵𝑵𝟐𝟐 � 𝟏𝟏 ∙ 𝒔𝒔𝟐𝟐𝟐𝟐

𝒏𝒏𝟏𝟏 ∙ 𝒏𝒏𝟐𝟐 �
𝒔𝒔𝟐𝟐𝟐𝟐

𝒏𝒏𝟏𝟏 ∙ 𝒏𝒏𝟐𝟐  , 𝐢𝐢𝐢𝐢 𝑵𝑵𝟏𝟏 � 𝒏𝒏𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝑵𝑵𝟐𝟐 ≫ 𝒏𝒏𝟐𝟐 

Here 𝒔𝒔𝟏𝟏𝟐𝟐 is the variance between strata mean values and 𝒔𝒔𝟐𝟐𝟐𝟐 the within-strata variance, N2 is the size of 
strata as the potential number of samples and n2 the number of samples taken from the stratum.  The 
great advance of stratified sampling is that only the within-strata variance propagates into the lot 
average if samples are taken from every stratum. With current process analysers measurements can 
be taken at short time intervals and that is used in the current method to estimate the process 
average and its variance continuously. Within a short range (or stratum in this case) a continuous 
process can be locally modelled with a line. With systematic sampling after a minimum of three 
measurements a line can be fitted to this range and the mean and variance of the range mean 
calculated.  That is the first stratum. When the process progresses, the calculations are repeated for 
the new strata and values. It is important that the quality of the final lot can be monitored on-line, 
especially if lots of certain sizes and demanding quality specifications are produced.  

The method is tested with different kinds of simulated and real data sets. This method can be easily 
modified also for 2D and 3D sampling targets. 

Introduction 
Variography is an excellent tool for monitoring the long-range trend of continuous processes. Pierre Gy1 presented in his 
book a method that can be used for estimating the measurement variance of a lot mean as function of sampling 
frequency for different sampling modes: random, stratified, and systematic sample selections. The method involves the 
estimation of the intercept (also called the nugget effect) of the variogram at time point zero, and numerical integration of 
the variogram. The method can also be used for optimizing sampling plans. At the time when variography was developed 
on-line analysers were not available. Samples were extracted from the process streams and analysed in laboratories. It 
was important to optimise the sampling plans to control the analytical costs and the reliability of the plans in estimating 
the estimation error. Variography is an excellent tool for that purpose. More than thirty or forty samples had to be 
analysed for a reliable variogram. Variograms and the variance estimates derived from variograms present average 
properties of the investigated lot from the time interval that the variogram covers. Therefore, the results cannot be used 
on-line. 
   Minkkinen & Paakkunainen2 have presented an optional method for variographic analysis. That method has been 
further developed in this study. Currently process analysers are widely used to monitor continuous processes. Like in the 
variographic analysis the estimation of the variance of the lot mean is also in this method based on the theory of stratified 
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sampling. If the lot is divided into N1 strata of equal sizes (or sublots) of which n1 are sampled, the variance of the lot 
mean aL is 

𝑠𝑠��� � �����
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���
��∙��  , if 𝑁𝑁� � 𝑛𝑛� and 𝑁𝑁� ≫ 𝑛𝑛�               (1) 

Here 𝑠𝑠�� is the variance between strata mean values and 𝑠𝑠�� the within-strata variance, N2 is the size of strata as the 
potential number of samples and n2 the number of samples taken from the stratum.  If samples are taken from every 
stratum only the within-strata variance propagates into the lot average, because 𝑁𝑁� � 𝑛𝑛� � 0 . That is the great advance 
of stratified sampling. With current process analysers, measurements can be taken at short time intervals and that is 
used in the current method to estimate the process average and its variance continuously. Within a short range (or 
stratum in this case) a continuous process can be locally modelled with a line. With systematic sampling after a minimum 
of three measurements a line can be fitted to this range and the mean and variance of the range mean calculated.  That 
is the first stratum. When the process progresses, the calculations are repeated for the new strata and values. When lots 
of certain sizes and demanding quality specifications are produced, it is important that the quality of the final lot can be 
monitored on-line. That makes it possible to classify the product based on the quality. 

   The method is tested with different kinds of simulated and real data sets. This same method is easy to modify also for 
2D and 3D sampling targets. 

Principle of the method 
With modern process analysers measurements can be taken at short intervals. In chemical processes where large 
quantities are processed, changes in average process values are slow. As the consequence of this, within short time 
intervals the changes can be effectively modelled with linear models fitted to the measurement results within the 
intervals. These short intervals can be treated as sublots forming the total lot monitored. From the predicted values and 
residuals, i.e., from the differences between the measured and predicted values, the estimates of the residual variances 
and the variances of the sublot mean values can be estimated as shown below. 
Local modelling of continuous data  
In the following presentation the equations are written using the MATLAB style. A set of measurements ai along time or 
distance axes with a constant lag between measurements can be presented as vector y = [𝑎𝑎�,𝑎𝑎�, … ,𝑎𝑎��], where nL is 
number of measurements within the lot. Fitting a line to sublots of two consecutive measurements (systematic sampling) 
is done as follows: 
 
� � �1 1

1 2�,   𝐘𝐘 � �𝑎𝑎�𝑎𝑎� 𝑎𝑎�𝑎𝑎� … 𝑎𝑎���𝑎𝑎�� �,                                                                                                                   (2) 

Regression coefficients � � �\𝐘𝐘 � �𝑏𝑏��𝑏𝑏�� 𝑏𝑏��𝑏𝑏�� … 𝑏𝑏����,�
𝑏𝑏��,�

�    (3) 

Predicted values of 𝐘𝐘𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 � � ∙ �      (4) 
 
The mean values of the substrata of duplicates are: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐘𝐘� � 𝐘𝐘�𝒋𝒋 � �𝑎𝑎��, 𝑎𝑎��, . . . , 𝑎𝑎������ � 𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛��� ∙ �          (5) 

The variances of substrata j = 1 … 𝑛𝑛� -1 are  𝑠𝑠�� � �𝑎𝑎��𝐘𝐘� and the relative variances are 𝑠𝑠��� � ���
���. 

The variance of the mean value of each stratum j for duplicates is:  𝑠𝑠���� � 𝑠𝑠��/2.  

The slopes of the lines fitted to duplicates are equal to the differences: B(2,:) = Y(1,:) - Y(2,:) and 𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛��𝑎𝑎� (YY))  and 
𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛��(2, j)2)/2   are equal to the value of the variogram for lag = 1.  

From duplicates it is possible to get the estimates of the total variances of sublots of 1 lag and their pooled value for the 
total lot.  

   The variance of the duplicates �𝑎𝑎��𝐘𝐘�: , 𝒋𝒋� � 𝑠𝑠�� � 𝑠𝑠������ � 𝑠𝑠������  . If the trend within the lag is approximately constant, 
i.e., the slope is approximately constant and 𝑠𝑠������ � 0, from duplicates it is possible to estimate only 𝑠𝑠��.  The variance 
estimate 𝑠𝑠������ � 𝑠𝑠���� � 𝑠𝑠����� , is the sum of the fundamental sampling variance and analytical variance. If the properties 
and concentrations of the particles in the mixture are known, 𝑠𝑠���� can be estimated theoretically (in variographic analysis 
this is usually called the variance of the nugget effect, v0). Many publications recommend that the nugget effect of the 
variograms is estimated experimentally by fitting a line to five to ten first variogram points and extrapolating it to lag zero. 
That is an easy but unreliable method as was shown by Heikka & Minkkinen4 and Minkkinen3. 
   The observation vector can be folded into the Y matrix containing more than two rows as follows. If 𝑛𝑛� is the length of 
the y vector and it is folded to Y having i = 1 … j rows; X must be modified accordingly. Again, the columns of X can be 
used for all substrata, i.e., the columns of Y of the lot. 
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The regression coefficients of lines fitted to substrata (columns of Y) together with predicted values are again obtained 

from equations (3) and (4): � � �\𝐘𝐘 � �𝑏𝑏��𝑏𝑏�� 𝑏𝑏��, … ,
𝑏𝑏��, … ,   

𝑏𝑏���,�
𝑏𝑏�,�

� and 𝐘𝐘𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 � � � � , and the mean values of the strata 

(=columns) of Y are obtained using Eq.  (5). The difference to the previous case is that we can also calculate the residual 
(measured – predicted) matrix E:                                                       
 
� � 𝐘𝐘 � 𝐘𝐘𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑                                (7) 

From the residuals, the residual variance for each substratum j can be calculated: 

𝑠𝑠�� � 𝑠𝑠�����: , 𝑗𝑗��/�𝑗𝑗 - 2) (8) 

The predicted mean values of the substrata j are �𝑎𝑎��,𝑎𝑎��, . . . , 𝑎𝑎�������� and are again calculated by using Eq. (5.)  

The variances of the strata midpoints are 

𝑠𝑠��� � � 𝑠𝑠��/𝑗𝑗 (9) 

   After the first j measurements of the lot are available, a line can be fitted to the first column of the matrix Y and the 
mean 𝑎𝑎����, residual variance 𝑠𝑠����  and variance of the sublot mean, 𝑠𝑠����� � � 𝑠𝑠���� /𝑗𝑗 , can be calculated. If the measurement 
vector is folded according to the Eq. (6) after each new measurement, a new stratum can be added to Y. Calculating the 
mean of the substrata j at the midpoint of the range j largely removes the effect of autocorrelation. When the process 
progresses a new mean can be obtained as the mean value of the strata covering the ranges from sublot 1 to the last 
value included in the lot that is monitored. As every stratum has the mean and standard deviation according to the Eq. 
(1), the between-strata variance is eliminated from the variance of the lot mean and only the within strata variances 
propagate into the lot mean. When new sub-lots are completed, cumulative values can easily be calculated, e.g., by 
using the following short MATLAB code where aLj(1:,j) are the predicted mean values of sublot midpoints from Eq. (5) 
and varaLcum(j) the variance of lot mean as function number of strata j : 

for j = 1 : nL- j +1,  
     aLcum(j) = mean(aLj(1:,j));   
     varaLcum(j) = mean(s2aj)/j; 
end 

In the following section examples with some simulated and real data sets are analysed with this new proposed method. 
For comparison, results are also calculated ignoring autocorrelation. The notation used in presenting results in the 
examples are:  

Process mean value and variance Ignoring autocorrelation are: 𝑎𝑎� � ��𝑎𝑎𝑛𝑛��𝑎𝑎�,𝑎𝑎�, … , 𝑎𝑎���� and 𝑠𝑠�� �
�𝑎𝑎���𝑎𝑎�, 𝑎𝑎�, … , 𝑎𝑎����. If the autocorrelation is not taken into account, the variance  of the process mean is calculated as 
function of the number of samples  using Eq. 10. 

𝑠𝑠��� � 𝑠𝑠��/𝑛𝑛�    

 (10) 

Examples 
Example 1 is a simulated data set presenting a process with linear drift. The process and the results modelling the 
process with moving windows of three observations are shown in Fig. 1. It shows the line presenting a time interval from 
a linearly increasing process and 30 measurements with random noise presenting a nugget effect (sum of the 
fundamental sampling error + analytical error of the measurements).  Fig. 1 shows also the variogram and the variance 
estimates for systematic sampling estimated from the variogram using Gy’s method. When a line was fitted to seven first 
values of the variogram, extrapolation to lag = 0 gave for V0 a negative value. As the variance estimate cannot be 
negative, a value V0 = 0 was used in estimating the variance estimates corrected for autocorrelation for the systematic 
sampling mode. 
   If the process is linear, the detrending (or correction for autocorrelation) can be made by fitting the line to all 
measurement points and calculating the measurement variance from the residuals, 𝐘𝐘 � �𝑎𝑎�;𝑎𝑎�;  … ; 𝑎𝑎��� in Eq (6).  
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Figure 1. Example of a linear process with measurement noise (upper panel). The lower panel shows the 
variogram. The variogram extrapolated to lag zero gives a negative value. Therefore V0 = 0 was used in 
calculating the variance values for systematic sampling (triangles). 

 

Figure 2. The upper panel shows 30 measurements from the simulated linear process (red dots) and mean of 
moving windows of 3 lags. The lower line shows the moving average as function of increasing range. The lower 
panel shows the relative standard deviation as a function of the number of measurements; the upper (red line) 
ignores the autocorrelation and in the lower panel the relative standard deviation is estimated with the current 
method from the consecutive moving windows of three measurements. 

   The upper panel of Fig. 2 shows the measurements, mean values of the moving windows of three measurements, and 
the moving lot mean as a function of measurement, or increasing range monitored. The lower panel of the figure shows, 
for comparison, two relative standard deviation estimates as a function of the number of measurements. Many sampling 
guides even today ignore the effect of autocorrelation and evaluate the mean and the uncertainty of the mean based on 
random distributions like normal, binomial or Poisson distributions. The figure presents both estimates. Table 1 shows 
the summary of the results of this experiment. The difference of the uncertainty estimates is large: The relative standard 
deviation of the mean, aL, of 30 measurements is clear:  0.73 % ignoring the autocorrelation and 0.0107 % estimated 
from the residuals from strata of three measurements using the proposed method. The variogram gave a lower value, 
0.098 % because the extrapolation of the variogram to lag zero underestimated the value of V0.                

   Example 2 presents the results of a simulated periodic process, also contaminated with a random noise. Table 2 gives 
the summary of this process. This data was analysed by using variography. The variogram up to lag 20 and the 
estimates of variance of the systematic sampling as function of sampling lag are presented in Fig. 3. In this case 
extrapolation to lag zero gave a negative value instead of the expected design value of 0.0165. V0 = 0 was used as the 
nugget value also in this case for estimating the variance of systematic sampling by using Gy’s method. Gy’s estimate of 
the relative standard deviation with lag 1 for the mean of 80 measurements was 0.073%. Estimated from the residuals 
the result was 0.085 %. 
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   Fig. 4 shows 80 of the first measurements from the simulated process, the mean values of moving windows of three 
measurements, and the relative standard deviation estimates of the lot of using the current method and ignoring the 
autocorrelation.  

Table 1. Properties of the linear simulated data set analysed in Example 1. Ignoring the autocorrelation, the 
relative standard deviation of the total Lot of 30 measurements is 0.73 %. Estimated from the residuals of the 
line fitted to all 30 measurements it is 0.17 %.  V0 is the variance (nugget effect) obtained by extrapolation of the 
variogram to lag = 0. Estimated from the variogram by Gy’s method he relative standard deviation estimate is 
0.098 %.  

 

STATISTICS  MEAN  VARIANCE 
NOISELESS PROCESS  10.725  0.194 
NOISE  0  0.0108 
TOTAL, 𝑠𝑠��  10.729  0.184 
FROM RESIDUALS    0.0107 
VO(EXTRAP)  ‐0.0065   
RSD estimates assuming randomness:  100 ��.���/��

��.��� % � 0.73%     
RSD from residuals: 100 ��.����/��

��.��� % � 0.17% 
 

Table 2. Properties of the cyclic simulated data set analysed in Example 2. The V0 estimate was obtained by 
extrapolation to lag = 0. The relative standard deviation of the total Lot of 80 measurements is 0.085 % estimated 
by the current method, and 0.073 % estimated by Gy’s method from the variogram. If the autocorrelation is 
ignored the relative standard deviation estimate is 0.81 %. 

STATISTICS  MEAN  VARIANCE 
NOISELESS PROCESS  10.000  0.5063 
NOISE  0.0055  0.0165 
TOTAL, 𝑠𝑠��  10.0055  0.5304 
FROM RESIDUALS    7.35×10‐5 
VO(EXTRAP)  ‐0.13   

RSD estimates assuming randomness:  100 ��.����
��

��.����� % � 0.81% 

RSD from residuals: 100 �7.35�10�5/80
��.����� % � 0.085% 

 

 

Figure 3. Absolute variogram of the periodic process up to lag 20 and extrapolation to V0 together with the 
variance estimates for systematic sampling. 
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Figure 4. Upper panel: Process values (red line) and mean values of the windows of three measurements (black 
circles) and moving average as function of increasing range. Lower panel: Relative standard deviation estimates 
ignoring the autocorrelation (upper line) and the estimates with current method (lower line) as a function of 
increasing range.  

   Example 3: Data for this example was taken from the study carefully analysed by using variography in references5 – 7. 
In that study 100 samples were taken during unloading from a shipload of soybeans. Samples were analysed for 
genetically modified material (GMO). In the European Union the material must be labelled as GMO containing material if 
the content exceeds 1 %. 0.9 % has been used as the decision limit for acceptance. It is supposed to give a 95% 
confidence that the true value does not exceed 1 %. Most sampling guides recommend that sample numbers of 4 to 8 is 
sufficient. That is illusory. With the segregation pattern of this example, in the above-mentioned references5 – 7, with a 
sample size of 3000 beans the minimum number of samples (or increments making a composite sample) is 42. 
   Figure 5 presents the analytical results (ai) as the relative heterogeneity contributions: hi = (ai+lag - ai)/aL the relative 
variogram calculated from the heterogeneities. The concentration of GMO material shows high variability. This is a good 
data set to demonstrate the value of the method proposed here. If the concentration of the analyte can be measured on-
line, the average quality of the process can be evaluated in real time and the product could be classified based on the 
average quality. This example shows what could be achieved with on-line measurement of the GMO content if such a 
technology were available. In this example the quality was estimated after each twenty samples taken (equivalent of 
dividing the cargo during unloading into five sub-loads). The results are presented in Figures 6 -10 and in Table 3.   

 

Figure 5. Relative heterogeneity contributions of GMO in 100 samples taken during unloading a shipload of 
soybeans together with the variogram. 
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Figure 6. Measurements and moving mean calculated from three sample windows of the first substratum 
consisting of twenty samples (upper panel). The lower panel shows the relative standard deviation estimate of 
the moving mean. The continuous line shows the results if autocorrelation is ignored and the dotted line the 
results calculated from the residuals. 

 

 

Figure 7. Results of the second stratum of twenty samples. 

 

Figure 8. Results of the third stratum of twenty samples. 

 

 

Figure 9. Results of the fourth stratum of twenty samples. 
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Figure 10. Results of the fifth stratum of twenty samples. 

 

Table 3.  Summary of GMO example 

RANGE  MEAN 
(%) 

VARIANCES RSD % 
var(ai) From 

residuals  
From 
var(ai) 

From 
residuals 

 1 - 20 0.423 0.1431 0.0392    19.6 11.0 
21 - 40 3.32 7.5 2.62    19.3 11.5 
41 - 60 9.47 16.4 2.82 10.2 4.18 
61 - 80 4.19 25.9 2.39 26.9 8.70 
81 - 100 2.29 19.1 9.44 33.2 31.6 
Mean of ranges 3.94 13.8 3.46 9.4 11.1 
1 - 100 3.96 21.0 3.80 11.6 13.4 
VO(EXTRAP) -0.13        

 

   This example shows the advantage of on-line measurements in monitoring continuous processes, raw materials and/or 
products. When analytical results are obtained with short intervals, the role of random error can be filtered from the 
estimation of the lot mean. A great advantage is, if a product with high quality specifications is manufactured, it can be 
continuously classified to product lots according to the quality. Like in this example, the average concentration of the first 
fifth of the cargo unloaded from the ship is 0.423 %, well below 1 %, and could be labelled as non-GMO material.  

   Example 4: Data for this example consisted of 100 process analyser measurements of one of the components at 10 
min intervals from the feed to a flotation plant. The variance plot clearly shows the noisy parts of the process and the 
moving mean plot how the noisy parts affect the mean of the lot. That can be valuable diagnostic information for process 
control. 
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Figure 11. Results of a range of 100 process analyser measurements from a feed to a flotation plant. The 
sampling interval used was 15 min covering a total of 25 production hours. The top panel shows the analyser 
results and the middle panel the residual variance, 𝒔𝒔𝒋𝒋𝟐𝟐 , of the windows of j measurements. The lowest panel 
shows the variance of the mean of the moving average. 

Modification of the method to 2-dimensional lots 
It is easy to modify this method to handle also 2-D lots. If the samples have been taken at regular grids, a plane can be 
fitted to squares taken from the grid. X and Y need to be redefined:  

� � �
1   1   1
1   1   2
1   2   1
1   2   2

�                  � � �
𝑎𝑎��𝑎𝑎��𝑎𝑎��𝑎𝑎��

� 

   The second and third row of X are the coordinates of the corners of a square on the plane from which the samples are 
taken and Y the vector of the corresponding analytical results. Otherwise, the equations used for the 1-D case apply. 
Modification for a 3-D case can be done the same way. For a more complicated sampling grid it is possible to use 
experimental designs. 

Summary 
Variography is very useful and a well-established method to analyse the long-range variability of 1-D processes. It can 
provide variance estimates for different sampling modes corrected for autocorrelation and for optimising the sampling 
interval when samples are cut from the process streams for laboratory analysis. The results are usually available long 
after a certain lot is produced. The results are also based on the average values of the process. 
   Process analysers on the other hand can produce results at high frequency. If the traditional variography is used for 
estimating the sampling variance of the lot, only a part of the data is used. The method proposed here gives the results, 
variance and mean of the progressing lot in real time. This is especially useful if the product has strict quality 
specifications (e.g., medicals, foodstuff, fertilizers). If the product is delivered in containers or big bags, they can be 
assigned individual certificates of their content. 
   While with increasing number of measurements the effect of the random part of the measurement error becomes 
insignificant in the lot average, that does not eliminate the systematic errors. A lot of process analysers are based on 
different spectroscopic techniques which get information only from a thin layer of the process stream. That can be a 
problem when materials which have a high tendency to segregate are analysed. When such materials, like crushed 
particles or powders on conveyor belts, are analysed and complete cross-sections cannot be sampled, the only solution 
is to randomize, if possible, the material at the point where the process analyser is installed. If that is not possible, 
material balance calculations cannot be based on process analyser results. Still, the results can be useful in monitoring 
the process behaviour with time. 
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