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The value of a fully statistical sampling theory is that it is possible to quantify a measure of material intrinsic heterogeneity and, on this 
basis, provide the entire distribution of the analyte content of potential samples to be extracted from the lot. The analyte content of a 
sample of a given mass is a random quantity as samples of nominally equal masses taken from a lot in a given state of comminution 
will not have exactly the sample analyte content. The analyte content of a sample is correctly described as a random variable and 
to characterise a random variable completely it is necessary to know either the probability density function or distribution function 
for the random variable, or all of the moments of the random variable (mean, variance and all the higher moments). The following 
discussion derives the fundamental sampling variance from a purely mathematical statistics basis, relying on the assumption that the 
number of particles of any one type (size and analyte content) that fall into a sample taken in a mechanically correct manner (following 
the principle of equiprobable sampling) follows a Poisson distribution. In addition, the Poisson distributions of particle numbers 
are statistically independent. A more fully argued substantiation of this fundamental assumption, partial experimental evidence and 
standard statistical introduction to the definition and properties of the Poisson distribution, and reasons for its use, can be found at 
the end of this article.

Material heterogeneity

T
he intrinsic heterogeneity (IH) of a 
particulate material with respect 
to a particular analyte or compo-
nent of the material reflects the 

extent to which the size and compositions 
of the particles differ. A jar of identical white 
marbles (same size, mass and chemi-
cal composition) possesses zero IH. A jar 
containing both black and white marbles of 
the same size possesses some positive IH 
(IH cannot be negative as it is a variance). 
Similarly, a sack of wheat will possess some 
intrinsic heterogeneity, but this will differ 
depending on what aspect of the wheat is 
under scrutiny. There will be one level for the 
IH with respect to nitrogen, another due to 
concentration of mycotoxins and another 
with respect to the content of small min-
eral or stone particles of the sack of grain. 
Likewise, a sample of a broken base metal 
ore will have different IH measures with 
respect to Cu, Ag, Au, Fe, Zn, Pb and S. IH 
is essentially a measure of the variability of a 
material with respect to the mass of an ana-
lyte carried within a particle. If all particles 
are the same, as the case of white marbles, 
the IH is zero.

Derivation
In a general mixture of particles there will be 
a range of particle sizes and, within each 
size fraction, there will be a range of par-
ticle compositions with respect to a target 
analyte. The material can be conceptually 

broken down into particle classes within 
which all particles are assumed to have 
the same nominal volume vk. Then within 
each volume class, particles can be put 
into composition classes of average analyte 
content akp and average density rkp. The kth 
volume class represents a mass fraction xk 
within the mixture and the pth composition 
class represents a mass fraction ykp within 
the kth size class. Table 1 summarises the 
notation for this model of the particles. 
The model can be made arbitrarily accu-
rate by expanding the number of volume 
and composition classes. For fine particles 
(<5 mm), it is possible to collect information 

on individual particle sections using an 
automated scanning electron microscope 
(Qemscan or MLA or other machine) from 
which this information can be calculated 
directly.

This form of a material model can be 
adapted to most particulate mixtures, but 
low grade gold ores are a possible excep-
tion, especially when the gold is present as 
relatively large grains within particles (in gen-
eral, the term “grain” can be used to refer 
to a contiguous volume of a phase within a 
larger “particle” which is a single contiguous 
and distinct volume of a material). In such 
a case it is the size distribution of the gold 
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Symbol Description Units
Convenient 

unit

Ns

Number of size classes into which the material is 
divided

— —

Nc

Number of composition (analyte content) classes 
into which the material is divided

— —

xk

Mass fraction of the total lot or sample falling in the 
kth size class

— —

ykp

Mass fraction of the pth composition class within 
the kth size class

— —

vk

Volume of the average fragment within the kth size 
class

L3 cm3

rkp

Density of the average fragment in the pth 
 composition and kth size class

m L–3 g cm–3

akp

Average concentration of the analyte in the pth 
composition and kth size class—may be a mass 
fraction or other (w/w) concentration unit such as 
ppm

— —

Table 1. Descriptors of a particulate material—the material model.
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grains that is of primary importance. Special 
methods have to be adopted to determine 
the size distribution of the gold.

The usual definition of the volume of the 
average fragment in the kth size class is
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where dk – 1 and dk are the square screen 
apertures defining the size fraction and f is a 
shape factor usually taken to be 0.5. Other 
definitions may be taken such as the geo-
metric mean size which is the square root of 
the product of the defining sieve apertures 
with the inclusion of a shape factor.

Note that sorting particles into density 
classes is not the same as sorting into com-
position classes. A density class can have 
a substantial range of compositions with 
respect to a particular analyte if there are 
more than two mineral phases in the par-
ticle mixture. Similarly, a composition class 
with respect to a particular analyte can 
contain particles of a range of densities in a 
multiphase mineral mixture.

The general equation for the composi-
tion of a sample, based on conservation of 
mass, can be written as
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where the Nkp are the numbers of particles 
and the mkp are the masses from each size-
composition class appearing in the sample. 
The numbers, Nkp are taken to be inde-
pendent Poisson random variables. As is a 
random variable as it is a function of other 
random variables.

The variance of the sample composition 
can be derived by the well-known rules 
of propagation of variance by which the 
composition is expanded in a Taylor series 
about the expected value of the number of 
particles. The derivatives are
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and are evaluated at the expected number 
of particles in the sample. Expected val-
ues of a quantity are denoted by a tilde, for 
example, �kpN .

The expected sample mass is identified 
as
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and the expected sample analyte content is
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so the derivatives can be simplified as
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Using only the first term in the expansion, 
the variance is by definition
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Since the particle numbers are Poisson 
random variables for which their variance is 
equal to their expected value,

 { } = �var kp kpN N  (8)

so
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The usual variables in the model of the 
material can be identified as follows
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Then
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The result of the derivation is the following 
expression for the sampling constant

 r
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The sampling constant is an intrinsic prop-
erty of the material; hence the term “Intrin-
sic Heterogeneity”. An intrinsic property of a 
material is one that does not depend on the 

mass or amount of the material present. In 
his work, Pierre Gy refers to a quantity he 
calls the “Constitution Heterogeneity” (CH). 
There is a difference between these two 
quantities, as Gy’s CH is a dimensionless 
measure. Pitard makes the same definition 
of the intrinsic heterogeneity as above.

The IH is more appropriate and in line 
with the naming of properties in thermody-
namics and the engineering literature. It is a 
direct measure of the heterogeneity of the 
material with respect to a given analyte in a 
given state of comminution. It has the units 
of mass.

The relative variance of the sample ana-
lyte content when taking a sample of nomi-
nal mass �SM  is
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This expression can also be written in 
terms of particle numbers and masses but  
Equation 13 is the most convenient.

This expression for the sampling con-
stant is entirely consistent with Gy’s work. It 
is also consistent with an expansion of the 
denominator in the expression for the sam-
ple assay, which provides another means of 
making the derivation.

It must be stressed that the sampling 
constant will differ for each chemical ele-
ment of interest in the mixture unless the 
elements of interest all occur only in a single 
mineral phase. The sampling constant may 
also be calculated to apply to a mineral 
phase in the mixture. If an element is carried 
by only one phase in the mineral mixture, 
then the sampling constant for the element 
will be equal to the sampling constant for 
the phase.

It is convenient to define a heterogeneity 
for a size fraction as
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Note that this quantity has units of density 
rather than mass.

This quantity is a mass-weighted second 
moment of the particle composition about 
the sample analyte content (not the ana-
lyte content of the size fraction itself) and 
generally (but not always) increases as one 
moves from one size fraction to a finer one.

For a distribution of particle composition, 
as shown in Figure 1, the quantities involved 
in the summation, except for the density 
term, are shown on the Figure.

With the above definition, the sampling 
constant can be written as
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This form of the equation emphasises 
that the sampling constant is a weighted 
sum of the IH values for the size fractions 
where the weighting factor is the product of 
the mass fraction of the i th size fraction in 
the material and the nominal volume of the 
particles in that size fraction. Even if the IH 
values for the size fractions increase mod-
estly as finer particles are considered, the 
volume weighting tends to be a dominant 
factor, so it is the IH values for the coarser 
size fractions that dominate the value of Ks. 
The exception to this is nuggetty gold ores 
and diamonds.

This derivation demonstrates that it is 
possible to derive the expression for the 
constitutional heterogeneity, or the intrinsic 
heterogeneity, which is an important com-
ponent of the fundamental sampling vari-
ance (error), from a purely statistical basis 
without reliance on a concept of material 
heterogeneity.

The derivation is based on Poisson 
distributions of particles numbers that 
fall into “correctly extracted” samples. 
This basis of Poisson distributions of 
particle numbers can also be used to 
derive the full sampling distribution using 
the method of characteristic functions. 
When the analyte content of the sample 
defined in Equation (2), is expanded as 
a  Taylor series in particle numbers, it 
becomes a weighted sum of indepen-
dent Poisson random variables for which 

the characteristic function can be written 
explicitly. Inversion of this function then 
provides the probability density function 
for the analyte content of potential sam-
ples from a lot. Knowing the form of the 
characteristic function also permits cal-
culation of all the moments of the sam-
pling distribution of which the sampling 
variance is simply the second central 
moment. These expressions are explicit 
and require no inversion calculation.

The Poisson Distribution: 
brief tutorial
When events occur at random but with a 
particular average rate, l, the number of 
events occurring in a defined period of time 
follows a Poisson distribution. If the period 
of time or the width of an interval is denoted 
as t, the expected number of events in t is 
n = lt. The probability that J events will take 
place in this interval is
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The expected value of the number of 
events and the variance of the number of 
events are equal, so

 { } { }= =E varJ J n  (18)

The characteristic function of the Poisson 
density is

 ( ) ( )j é ù= -ê úë ûexp 1iuu n e  (19)

The time or distance between consecu-
tive events in a Poisson process is expo-
nentially distributed.

The probability density function is illus-
trated in Figure 2. The function is sub-
stantially skewed for low expected values, 
but becomes more symmetrical as the 
expected value increases.

Why is the assumption of Poisson distrib-
uted particle numbers a sound and reason-
able one? There are several arguments that 
can be marshalled to support the use of the 
Poisson distribution for particle numbers in 
correctly taken samples.

First, from a mathematical viewpoint, the 
rules of propagation of variance used to 
arrive at the results in Equations (11) or (12) 
are known to be a correct methodology. 
If the variance of the number of particles 
were not taken to be equal to the expected 
value of the number of particles, Gy’s result 
for the sampling variance would not result 
from the present analysis. The sample vari-
ance would be either smaller or larger. The 
assumption of the property of the Poisson 
distribution is the only one that leads to Gy’s 
result, because there is no other discrete 
distribution having a variance equal to the 
expected value.

Second, there is experimental evidence. 
It is possible to take a batch of small (about 
2.5 mm) coloured plastic particles, com-
bined in known proportions, and pass a 
sample of this material through a small 
rotary sample divider to create a number 
of subsamples. The particles in each of the 
subsamples can then be counted and the 
variance of the numbers over the subsam-
ples can be compared with the average or 
the expected number. In courses given by 
the author, participants and students have 
carried out this exercise with results that 
are statistically compatible with the Poisson 
assumption.

Third, from the point of view of ways of 
describing randomness, picture a set of 
particles laid out along a line in the most 
random possible manner, in such a way 
that there is some average number of par-
ticles per unit length when a long line seg-
ment is considered. If particles are placed at 
positions along the line in the most random 
manner possible, it is natural to think that 
the probability of finding a particle in any 
one short line segment “dx” is constant; 
no part of the line is favoured. This uniform 
distribution of the particles along the line 
leads to the mathematical conclusion that 
the number of particles in any finite line 

Figure 1. Illustration of terms involved in calculation of the IH value for a size fraction.
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segment of length L will follow a Pois-
son distribution. The nature of placement 
of the particles is known to statistical 

mathematicians as a Poisson point pro-
cess. So, if one were to take a “stopped 
belt” sample over a particular length of the 

line, the number of particles in that sample 
would follow a Poisson distribution with an 
expected value proportional to the particular 
length considered. The Poisson point pro-
cess for distributing particles in space is the 
most random and statistically uniform of all 
point processes and is, therefore, the most 
reasonable assumption to make regarding 
the distribution of the numbers of particles 
falling into a correctly taken sample.

Finally, a fourth argument can be made 
on the basis of equiprobable sampling. If 
particles are selected from a lot one by one 
and at random and the entire set is acces-
sible for selection (correct sampling), the 
number of particles of any one type that are 
selected will follow a hypergeometric distri-
bution (drawing elements at random from a 
finite set without replacement). However, if 
the size of the set is large compared to the 
number of particles selected, the hypergeo-
metric distribution converges to a binomial 
distribution. And, when the size of the set 
is very large, the binomial distribution can 
be represented by a Poisson distribution. 
These limiting cases are well-known in the 
statistical literature.

Figure 2. Examples of the Poisson distribution for various expected values.
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