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Fast real-time monitoring of water quality can help facilitate reuse of industrial process water. Near-infrared spectroscopy is a well-established process 

monitoring tool within the pharma and food industry. Utilising near-infrared spectroscopy as one of the pieces in the puzzle for optimising water reuse is 

therefore attractive. Partial least squares regression models were computed on 286 near-infrared spectra of mono salt solutions of KCl, K2SO4, KNO3, CaCl2, 

CaSO4 and Ca(NO3)2. Concentrations ranging from 0 ppm to 1000 ppm (w/w) in steps of 100 ppm were measured at 10, 25 and 40 °C. Analysis showed 

that the concentration of salt could be predicted independently from temperature resulting in a root mean squared error of cross validation, RMSECV, of 

186 ppm and an R2 of 0.67. A global temperature model and an individual model on K2SO4 at 25 °C cross validated by leave-one-concentration-out resulted 

in RMSECV values of 181  ppm and 115 ppm and R2 values of 0.68 and 0.87. The limit of detection and limit of quantification for K2SO4 was estimated to be 

140 ppm and 400 ppm.

Introduction
In a 1985 paper, Tomas Hirschfeld wrote that, “…at first glance, 
the determination of salinity by infrared spectroscopy is so 
implausible as to seem ridiculous”. However, as Hirschfeld 
points out, inorganic salts in an aqueous solution will alter the 
shape and position of the water absorption bands, and hence, 
can be quantified.1 Near-infrared spectroscopy analysis has 
become a very attractive tool for process monitoring in the 
pharma and food industries (e.g. process analytical tech-
nology). Due to the price, speed and accuracy of this method, 
there is an industrial interest in exploiting the possibilities of 
applying near-infrared spectroscopy to solve water related 
production issues, particularly those related to sustainable 
water use and reuse.2 Better process understanding of filtra-
tion systems such as reverse osmosis is a key ingredient 
in reducing water consumption while increasing reuse of 
process water. This work represents a first step towards 
utilising the advantages in using near-infrared spectroscopy 
for inline water quality monitoring targeting quantification of 

inorganic salts, a key performance parameter for membranes 
in reverse osmosis water filtration systems.

It was already established at the beginning of the 19th 
century that salt and temperature can alter the height, width 
and position of the absorbance bands of water. One of the 
earliest investigations into how the near-infrared spectrum 
of aqueous solutions change as a function of salt type, salt 
concentration and temperature was performed in 1913 by 
Harry Clary Jones and James Samual Guy.3 The cause of 
these changes is related to the hydrogen bonding network 
of water. Increasing the temperature will decrease the 
strength of the hydrogen bonding network, which in turn 
will enable the OH-bonds of the water molecules to vibrate 
at a higher frequency introducing a shift while decreasing 
the temperature will have the opposite effect (anharmo-
nicity rule). Ions in a solution have a similar influence on the 
hydrogen bonding network of water. Depending on their 
charge and size, ions will influence this network similar to 
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temperature. However, there is still not consensus on 
the specific hydration mechanisms and individual effects 
of ions on the hydrogen bonding network. Therefore, 
these effects are still being studied today, and it has 
been shown numerous times that these changes can be 
quantified in such a way that the salt concentration in 
an aqueous solution can be predicted by near-infrared 
spectroscopy.1,4–7 These authors report limits of detec-
tion (LoD) for NaCl to be in the area of 900–2300 ppm 
in concentrations ranging from 0.01 M to 10 M (~600–
600,000 ppm). These LoDs cannot be directly compared 
as they span different concentration ranges; as their 
models were validated differently and since the LoD were 
calculated according to different standards. However, 
their findings give an indication of the detection limits of 
salts in general throughout the last 30 years.

In this proceeding we present a part of the results 
from the first steps of the investigation of the feasibility 
for using near-infrared spectroscopy to monitor the salt 
content in industrial process water. In a systematic exper-
imental design optimised to achieve a high signal-to-
noise ratio we show how the concentration of aqueous 
mono mixtures of salt can be predicted and establish the 
limit of detection and quantification of individual salts.

Materials and methods

Preparation of salt solutions
In this study six different salts were used: KCl, K2SO4, 
KNO3, CaCl2, CaSO4 and Ca(NO3)2. All salts were 
purchased from VWR Chemicals (Søborg, Denmark) with 
a purity of 99 % except Ca(NO3)2 which had a purity 

of 98 %. Each salt solution was prepared by making a 
15,000 ppm (w/w) stock solution (the CaSO4 stock solu-
tion was 1000 ppm due to low solubility), which was 
diluted to concentrations of 100–1000 ppm (w/w) in 
steps of 100 ppm. For each salt solution the stock solu-
tion was weighed off into a container, the weight noted, 
and Milli-Q water (18.2 MΩcm) added corresponding to 
the required concentration. To avoid potential contami-
nation from glassware all solutions were made and 
stored in 250 mL polypropylene bottles (Product ID: 
S.061.22.901.030, ISOLAB GmbH, Wertheim, Germany). 
To minimise any degree of evaporation during the experi-
mental period which ran over three weeks the salt solu-
tions were, when possible, kept at 5 °C. Furthermore, 
over the duration of the experiment three control bottles 
were regularly weighed in order to monitor evaporation 
of the solution. Upon ending the experiment no signifi-
cant evaporation of the solutions had occurred.

Spectral measurements
Spectral data on the salt solutions were acquired using 
an ABB MB3600 Fourier transform near-infrared spec-
trometer (Q-Interline A/S, Tølløse, Denmark) equipped 
with an InAs detector (830–2700 nm). An overview of 
the experimental design is shown in Figure 1. Single 
beam spectra were collected with Horizon MBTM FT-IR 
software (version 3.4.0.3, ABB, Quebec, Canada). All 
spectra were acquired in transmission mode using a 
2 mm quartz cuvette optimising the 1st and 2nd overtone 
of water in the region from 907 nm to 1846 nm. A lid 
was placed on top of the cuvette to avoid evaporation 
during measurements. Before each measurement the 
cuvette was thoroughly cleaned with Milli-Q water and 
ethanol. For temperature control, an aluminium cuvette 

Figure 1. Experimental design. OT = overtone.
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sample holder connected to a water bath (Haake Phoenix 
C25P, Thermo Electron Corporation, Germany) was 
used, enabling temperature control with an accuracy of 
±0.1 °C. Furthermore, the spectrometer was purged with 
dry atmospheric air to remove water vapour and thereby 
improve the spectral quality.

For each salt solution 2200 scans were acquired at a 
resolution of 32 cm–1 resulting in a 10-minute acquisi-
tion time per spectrum. Each solution was measured 
at temperatures of 10, 25 and 40 °C. Salt solutions of 
Ca(NO3)2 and K2SO4 were measured in triplicates at 10 
and 25 °C. Due to time constraints triplicates were not 
measured at 40 °C. The samples were measured on 14 
different days spanning a time period of three weeks. 
The measurement order of the samples was randomised 
within each temperature.

Reference spectra were obtained on an empty cuvette. 
In order to level out instrumental and temperature vari-
ations during each measurement 1100 spectra were 
collected before each sample measurement. The refer-
ence spectra before and after a measurement were then 
averaged and used for spectral correction.

At each temperature the samples were equilibrated 
in a water bath (13 DT-1, Heto-Holten A/S, Allerød, 
Denmark) before the measurement. When starting a 
reference or sample measurement the content of the 
cuvette, air or salt solution, were furthermore allowed to 
equilibrate for 5 minutes.

Data analysis
The spectral data matrix acquired by the ABB MB3600 
had the dimensions 286 samples × 1024 wavelengths. 
110 samples at 10 °C, 110 samples at 25 °C and 66 
samples at 40 °C. As a starting point for chemometric 
analysis the wavelength region of 907–1846 nm was 
used resulting in 364 wavelengths.

In order to investigate if a global predictive model 
computed by partial least squares regression (PLS)8 could 
be developed independently from temperature, prin-
cipal component analysis (PCA)9 was applied in order 
to extract the main variation in the data arising from 
temperature observed in the first principal component. 
This was then subtracted the mean centred original data 
removing temperature effects before modelling.

Predictive models were computed at each tempera-
ture by PLS in range of 907–1846 nm on spectra pre-
processed by mean centring. Models were cross validated 
by leave-one-concentration-out, leave-one-salt-out 

and leave-one-temperature-out on average removing 
9, 17 and 33 % of the data. Outlier detection was done 
based on a combination of PLS scores, PLS predic-
tions, Hotelling’s T2 and Q residuals. A sample was only 
removed from a model if the sample could be lead back 
to an experimental error. Of the 286 samples, 5 were 
removed upon analysis. In case of ambiguity concerning 
the number of PLS factors to include in a model, the 
lowest number of factors were always chosen in order to 
obtain a conservative estimate of the root mean squared 
error of cross validation, RMSECV.

All computations were made using MATLAB R2016b 
(The MathWorks, Natick, MA) and all chemometric 
models were developed under PLS Toolbox version 8.2.1 
(Eigenvector Research, Inc., Wenatchee, WA). 

Estimating limit of detection and limit of 
quantification
The author follows the guidelines of IUPAC10 to estimate 
the limit of detection (LoD) and limit of quantification 
(LoQ).

	 L bi bix x ks= + 	 (1)

where bix  is the mean of the blank measures, sbi is the 
standard deviation of the blank measures and k is a 
numerical factor chosen according to the confidence 
level desired. In this study k = 3 for the LoD and k = 10 
for the LoQ.

Results and discussion

Spectral features arising from temperature
Figure 2a displays the raw spectra of the salt solu-
tions measured at 10, 25 and 40 °C. It is evident that 
the spectra shift to lower wavelengths, with increasing 
temperature. The maximum absorbance of the band 
arising from the combined symmetric and antisymmetric 
OH stretching changes from 1456 nm to 1437 nm going 
from 10 °C to 40 °C.

Figure 2b shows difference spectra of Milli-Q water, 
measured on the same spectrometer under the same 
conditions as the main experiment, at temperatures from 
15 °C to 45 °C in steps of 5 °C calculated by subtracting 
a 10 °C spectrum. The spectra are changing linearly with 
temperature at 963, 1154, 1412 and 1490 nm as has 
been observed previously.11,12
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Predicting salt concentration independently 
from temperature
Initial PLS models using a leave-one-temperature-out 
cross validation scheme showed that the salt concentra-
tion could not be predicted independently from tempera-
ture when common pre-processing methods were applied 
(data not shown). Various other approaches were investi-
gated. The best solution proved to be subtracting the first 
principal component (scores multiplied by loadings) of a 
mean centred PCA model from the original mean centred 
data before predicting the salt concentration. Figure 3a 
shows the first principal component which shares the 

same spectral features at 963, 1154, 1412 and 1490 nm 
arising from temperature as the difference spectra shown 
in Figure 3b. This confirms that these changes are related 
to temperature. Figure 3b shows the spectral data after 
subtraction of the first principal component. As can be 
seen there is still some temperature information left in 
the spectra, but subtracting more PCA components did 
not improve the model. An RMSECV of 186 ppm and an 
R2 of 0.67 could be obtained for the global temperature 
model (data not shown) giving an estimate of how well 
new samples in the same concentration range, measured 
at an unknown temperature, will be predicted by the 

Figure 2. (a) Raw spectra of salt solutions measured at 10, 25 and 40 °C. (b) Difference spectra of Milli-Q water from 15 °C 
to 45 °C calculated by subtracting a 10 °C Milli-Q water spectrum.

(a) (b)

Figure 3. (a) First principal component of a mean centred PCA model. (b) Mean centred original data subtracted by the first 
principal component from a mean centred PCA model.

(a) (b)
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model. In the case of a reverse osmosis filtration, where 
the temperature will fluctuate, being able to predict the 
salt concentration independently of temperature would 
be an attractive feature. However, temperature fluctua-
tions in a reverse osmosis plant will typically not be as 
extreme as in our conditions.

In order to be able to compare models across combined 
and individual temperatures and individual salt types only 
cross validating by concentration or random is applicable. 
Figure 4a displays an actual versus predicted plot for a 
six-factor global temperature PLS model cross validated 
by leave-one-concentration-out having an RMSECV of 
181 ppm and an R2 of 0.68. It is evident that some salts 
are better predicted than others. The individual RMSECVs 
of the salts span from 163 ppm for K2SO4 to 213 ppm 
for Ca(NO3)2 (data not shown). K2SO4 concentration is 
in general predicted better than the concentration of 
Ca(NO3)2. This is not surprising as one would expect 
the salts to alter the spectra differently.3,4,6 The salts 
were prepared on a weight/weight basis. If there were 
no differences between how the salts affect the spectra 
one would expect the salts to be predicted with roughly 
the same error, and basically correspond to a dry matter 
determination. Apparently, this does not seem to be the 
case for this model and thus the differences in prediction 
errors may arrive from the different spectral changes due 
to salt type.

Predicting salt concentration of an individual 
salt
PLS models were made on the K2SO4 data. Figure 
4b display actual versus predicted plots of the model 
computed on mean centred 25 °C data applying leave-
one-concentration-out cross validation. With an RMSECV 
of 115 ppm and an R2 of 0.87 the individual salt model 
performs better than the global one.

The LoD and LoQ was calculated according to Equation 
1 resulting in 140 ppm and 400 ppm for K2SO4. The LoD 
value is lower than what has been previously reported.5,7 
These authors showed LoD values of 15 mM (~900 ppm) 
and 1000 ppm for NaCl. However, as the LoDs have 
been based on different salts, concentrations ranges, 
calculations and validation schemes they are not directly 
comparable.

Evaluation of the feasibility to predict the salt 
concentration in a reverse osmosis plant
ICP-OES has been used to characterise the element 
composition and concentration of the permeate from 
a double reverse osmosis (RO) filtration of whey from 
a production of cheese made from cow’s milk.13 It was 
found that the most abundant element in the permeate 
was potassium with concentrations ranging from approxi-
mately 800 ppm in the feed into the first RO unit, and 
5 ppm in the permeate at the second RO unit (see 

Figure 4. (a) Predicted versus measured plot from a mean centred PLS model made on 10, 25 and 40 °C data cross vali-
dated by leave-one-concentration-out. Coloured according to salt type. The original mean centred data were subtracted by 
the first principal component from a mean centred PCA model before analysis. (b) Predicted versus measured plot from a 
mean centred PLS model made on 25 °C data cross-validated by leave-one-concentration-out. Coloured according to salt 
type.

(a) (b)
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Figure 5). With RMSECVs of 181 ppm and 115 ppm, in 
the concentration range from 0 ppm to 1000 ppm, for 
the global temperature model and the individual K2SO4 
model it would only be feasible to monitor the retentate 
of the first RO unit which is expected to have approxi-
mately 800 ppm of potassium. However, this retentate 
also contain lactose concentrations of approximately 
3–30 %, which could interfere with the salt predictions, 
especially because salt does not have a distinct signal but 
is modelled indirectly via the water absorbance spectrum. 
In this study we only measured on mono salt solutions, so 
further measurements on solutions having both salt and 
lactose is required in order to investigate if salt can be 
predicted in a lactose containing matrix.

Another implication of predicting salts in process 
streams is that there will normally be more than one salt 
dissolved. As mentioned above the models presented 
in this paper are made from spectral data from mono 
salt solutions. Therefore, they are not directly applicable 
to water streams containing mixtures of salts, as would 
be the scenario in many industries including food and 
pharmaceutical production. Additional experiments 
are needed in order to establish if the concentration of 
salts (or ions) can be predicted separately in solutions 
containing more than one salt.

Conclusions
This study has shown that the concentration of salt can 
be quantified by near-infrared spectroscopy. Spectral 

changes caused by temperature can be removed by 
PCA producing PLS models which can predict the 
salt concentration independently from temperature 
with an RMSECV of 186 ppm and an R2 of 0.67. Lower 
prediction errors can be obtained when data from 
one temperature and salt is applied to the model. 
The limit of detection for K2SO4 at 25 °C were esti-
mated to be 140 ppm with a limit of quantification 
of 400 ppm. In most reverse osmosis filtration plants, 
the actual concentrations of salts will probably be 
too low for near-infrared spectroscopy to work as a 
process analyser for monitoring the salt content except 
perhaps for the retentate. Additional experiments are 
needed in order to establish whether salts in mixtures 
of more than one salt can be predicted.
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Figure 5. Diagram of two reverse osmosis filtration units. UF = Ultra filtration, RO = Reverse Osmosis. 
Adapted from Skou et al. (2017).13
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