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Hyperspectral imaging (HSI) is a popular mode of remote sensing imaging that collects data beyond the visible spectrum. Many classification tech-

niques have been developed in recent years, since classification is the most crucial task in hyperspectral image processing. Furthermore, extracting 

features from hyperspectral images is challenging in many scenarios. The semi-supervised classification of HSI is motivated by the Cycle-GAN 

method that has been proposed in this research paper. Since the proposed HSI classification method is semi-supervised, it makes extensive use 

of the labelled samples, which are short and have numerous unlabelled images. The research is carried out in two phases. First, to extract the 

 spectral–spatial features, the minimum noise fraction is adopted. And, second, the classification of the semi-supervised method is done by the 

cycle-GANs. Subsequently, the proposed architecture is implemented on three standard hyperspectral dataset methods. As a result, the perfor-

mance comparison is carried out in the same field as state-of-the-art approaches. The obtained results successfully demonstrate the supremacy of 

the proposed technique in the classification of HSI.

Keywords: feature extraction, hyperspectral image, cycle-GANs, semi-supervised classification, minimum noise fraction (MNF), AVIRIS sensors, 
rolling guidance filter (RGF), Indian Pines, transductive support vector machine (TSVM), convolutional neural networks (CNN)

Introduction
Hyperspectral imaging (HSI) research is now widely used 
in various fields, including land coverage classification, 
monitoring and quality control, environmental science 
and industrial applications.1,2 It has been much used in 
the fields of security, urban planning and mining tech-
nology. Hyperspectral images are 3D data cubes, that 

contain 1D-spectral information (spectral bands) and 
2D-spatial information (image feature).3,4 The spectral 
bands contain fine wavelengths, while dispersion and 
correlation are visible among nearby pixels from various 
angles on images of confident wavelength character-
istics, like shape and land cover.5,6 There are numerous 
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issues with HSI processing, including high dimensionality, 
computational complexity, poor contrast, noise and a 
lack of training samples. To overcome the dimensionality 
issue, techniques of pre-processing such as minimum 
noise fraction (MNF),7–9 randomised principal component 
analysis (R-PCA) etc. are employed to extract the most 
appropriate features. The large number of spectral bands, 
which produce a dimensionality of high degree data, 
poses a challenge to image analysis and classification.10,11 
Various types of classifiers have been developed over the 
last few decades to solve the above-mentioned prob-
lems. They can be organised into three main categories, 
i.e. semi-supervised methods, unsupervised methods and 
supervised methods.12,13 In unsupervised methods, large 
unlabelled samples are used to train the models. Because 
unsupervised methods can easily handle hyperspectral 
data, no labelled samples are required. Several unsuper-
vised methods, such as C-means, graph-based, artificial 
immune algorithm, fuzzy clustering, fuzzy and others 
have outperformed the supervised methods in hyper-
spectral classification. It is impossible to determine the 
relationship between clusters and classes due to a lack of 
prior knowledge.14,15

The semi-supervised techniques of learning try to solve 
the “small sample problem” by combining the advantages 
of both a limited number of labelled data with a large 
number of unlabelled samples that are easily available. 
Semi-supervised methods are organised into four catego-
ries: (1) the generative models, by which the densities of 
the condition to get the sample labels are evaluated.16,17 
(2) Separation of low-density, in which the boundaries are 
placed in the areas where some samples are obtainable 
(labelled or unlabelled). The transductive support vector 
machine (TSVM) is the chief among the state-of-the-art 
algorithms. (3) Labelled and unlabelled samples that 
are utilised by graph-based methods and assign labels 
to unlabelled samples. (4) Wrapper-based methods, in 
which in every iteration of the method of supervised 
learning, the unlabelled samples are labelled gradually. 
Self-training and co-training are the most frequently used 
wrapper-based methods.

Unfortunately, the methods mentioned above can 
only extract a few features from the HSI dataset. Deep 
learning has emerged as a hotspot in image processing, 
particularly in hyperspectral classification, according to 
recent research. Deep brief networks (DBN), convo-
lutional neural networks (CNN) and stacked autoen-
coders (SAE) are common deep architectures.18 For 
training to carry out frameworks of supervised classifi-
cation, a large number of labels must be granted. Using 

a semi-supervised classifier following contextual deep 
learning and multi-decision labelling (CDL-MD-L), the 
current work has demonstrated hopeful results in the 
classification of the hyperspectrum.19,20

A significant number of labelled samples are required 
for training the frameworks of supervised classification. 
However, the semi-supervised approach can handle 
both labelled and unlabelled samples. Semi-supervised 
learning takes over by increasing the generator samples 
for feature extraction and maximising the output of the 
classifier dimension. Here, the proposed semi-supervised 
framework drives to promising results, outperforming 
some existing methods.

The main contributions of this research include:
	� A new framework for semi-supervised spectral–spatial 
HSI classification is introduced.
	� The noise in the HSI may be reduced more effectively 
by incorporating the MNF during dimensionality 
reduction.
	� To improve the accuracy of classification, the proposed 
cycle-generative adversarial networks (cycle-GANs) 
technique for the classification of HSI uses spatio–
spectral features.
	� The proposed technique is estimated on three broadly 
utilised HSI datasets and hopeful results are found.

Literature review
Recently, many researchers have focused on improving 
classification accuracy via semi-supervised learning 
frameworks.

A semi-supervised classification algorithm combining 
the methods of deep learning and clustering for HSI was 
introduced by Wu et al.21 They addressed the problem of 
excessively unlabelled samples happening in hyperspec-
tral images that are solved by a self-training algorithm, in 
which the labelled samples are expensive. First, by using 
CNN the spatial–spectrum features were extracted. Then 
for clustering of semantic constraint, the extracted spec-
tral–spatial features were utilised. Once the results of 
clustering for all the images had been received, using 
local decisions the pseudo labels were flattened. They 
compared the algorithm to spatial neighborhood infor-
mation (SNI)-unit, SNI-L and contextual deep learner  
(CDL), respectively. On comparing the other three algo-
rithms, the overall accuracy (OA), average accuracy (AA) 
and Kappa of the proposed algorithm was higher. Cui 
et al.22 presented a classification of the semi-supervised 
method with regards to Rolling guidance filter (RGF) and 
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extended label propagation (ELP) said to be RGF-ELP. 
ELP is a fresh two-step process that makes use of all the 
unlabelled samples. They broadcast the information of 
the label from labelled to unlabelled samples around in 
the starting step by using graph-based label propagation. 
From the segmentation of the image, the next step was 
to allocate similar labels to every pixel through the super-
pixels generated, modifying any labels that were improp-
erly labelled over the last step. In addition, to enhance 
the initial hyperspectral image, the RGF was used to elim-
inate the noise and small textures which is an effective 
method of feature extraction. At last, to train a support 
vector machine (SVM) these introductory labelled and 
high-confidence pseudo located samples were utilised.

A super pixel-level method of classification, depending 
on the graph and discrete potential (SSC-GDP) for HSI 
was suggested by Zhao et al.23 To produce a connec-
tivity weighted graph and to split the weighted graph 
is the key concept of this method. Using the weighted 
connection between the superpixel and its spatial 
neighbourhood depending on the segmentation of the 
superpixel is constructed by the weighted connectivity 
graph. Then, the created graph was divided into various 
sub-graphs using an improved algorithm of semi-super-
vised Wu–Huberman (ISWH). Two benchmarks which 
are publicly available, such as the Salinas and Indian 
Pines, were used for the performance testing approach 
for proving the spectral–spatial method effectiveness of 
the proposed.

Boggavarapu and Manoharan24 analysed the spatio–
spectral features and uncorrelated bands extraction and 
texture patterns exploitation via analysis of the Gabor 
filter and exploratory factor, respectively. Then, in each of 
the factor analysis variables, they enclosed these features 
to the real cube basically the noise is heteroscedastic. To 
classify the hyperspectral cube labels, three-dimensional 
CNNs are used. Experiments are carried out on the data-
sets of three benchmarks such as Salinas, University of 
Pavia and Indian Pines.

Based on a superpixel pooling CNN (SP-CNN) with 
transfer learning classification of spectral–spatial HSI 
technique was developed by Xie et al.25 This method 
comprises three stages. Convolution and pooling in 
the first stage, and through downsampling, it extracts 
the major spectral HSI characteristics. They combined 
up-sampling with the pooling of superpixels in the second 
part. Finally, the hyperspectral data is nourished to CNN 
as a pixel. The information of the spectral and spatial 

is efficiently combined by the technique of superpixel 
pooling usage in this method.

For performance improvement, the reduction of 
auto-encoder-based dimensionality was suggested by 
Ramamurthy et al.26 To enhance the accuracy, the pixel 
has been constructed again using vectors and the loss 
of reconstruction was found. The classification process 
for hyperspectral images was applied by the CNN frame-
work. The presented technique was related to the other 
existing techniques of SVM, spectral–spatial residual 
network (SSRN) for different parameters.

For hyperspectral image classification, the hybrid 
CNN model based on the multiple scale spatio–spectral 
features is developed by Mohan and Venkatesan.27 A 
linear Gaussian random projection (GRP) and non-linear 
kernel principal component analysis (KPCA) were handled 
by a hybrid technique, which was used for the extraction 
of the optimal band. For varying sizes of the window using 
3D-CNN, the hybrid classification of the CNN technique 
extracts the features of spatial and spectral methods. For 
the additional feature extraction and classification, the 
features were linked and carried into a 2D-CNN. Against 
several state-of-the-art methods, the CNN-based tech-
niques were related to the hybrid model.

Problem statement
One of the key concepts of a hyperspectral image is the 
presence of a large number of small, adjacent spectral 
bands containing various information. This information 
can be utilised in the applications of remote sensing like 
classification of land cover, analysis and crop protec-
tion, and detection of minerals. In most applications, 
pixel classifications in a hyperspectral image are crucial. 
Although there are several challenges affiliated with this 
task, the most prominent barrier is the lack of perfectly 
labelled pixels. Moreover, compared to the dimensions 
of the spectrum of the hyperspectral image, the absence 
of labelled pixels results in a comparatively small amount 
of training data. This introduces the dimensionality curse 
to this application. Hyperspectral images have numerous 
spectral dimensions, some of which are surplus. Thus, 
extracting distinct features plays a crucial role in the 
process of classification by decreasing the input data 
dimensionality. To accomplish this, we present effective 
techniques for reducing dimensionality and HSI pixel 
classification.
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Methodology
The dual parts of the proposed methods’ conceptual 
architecture are shown in Figure 1. The spatial and spec-
tral features are extracted in the first part using MNF. 
As a result, the cycle-GANs are used for the classifica-
tion feature space of the method of semi-supervision, 
taking full advantage of both limited labelled and enough 
unlabelled samples. The classification map is a visual 
representation of accuracy results for different samples.

Feature extraction
Feature extraction is the extraction of relevant informa-
tion from an information class. Since features are the 
necessary elements of any data set, feature extraction 
is essential in the learning process. The extraction of 
features for HSI classification can be divided into two 
phases, such as (i) spatial feature extraction and (ii) spec-
tral feature extraction. This can be done by adopting the 
MNF transform.

The MNF transform is used to remove correlations 
between bands or to reduce data noise. By taking the 
original matrix X ∈ RM × N spectral data and the matrix 
of transformation W ∈ Rd * M, the HSI bands number are 
denoted as N, M, where, N, M is the HSI pixel number, 
also the data’s size of a new dimension is denoted as d. 
The features extraction matrix of MNF Y ∈ Rd × N can be 
mathematically represented and given as:

 Y = WTX (1)

Here, the original data matrix is “X”, S is the signal 
part and N is the additive noise part and represented as 
shown in (2):
 X = S + N (2)

Consequently, the matrix of covariance “X” is equal to 
the sum of the matrices of noise and signal and denoted 
as below:

 ∑X = ∑S + ∑N (3)

where ∑N is the covariance of noise and ∑S is the covar-
iance of the signal. The MNF’s goals are to create new 
features (Y) that can be classified by their signal-to-noise 
ratio, as a linear transformation. It is given as follows by 
calculation:

 
T

T
argmax 1

x
-å

åW

W W

W NW
 (4)

W should be made up of the eigenvectors connected 
with classified eigenvalues of ∑X. MAF (factor of minimum/
maximum auto-correlation) is used to calculate the cova-
riance of noise ∑N in this research paper. Two stages are 
involved in this method. First, noisy images are generated 
from every band of HSI as shown in formula (5):

 ( , , ) ( 1, 2, )Noise image i j k i j kx x +D +D= -  (5)

Figure 1. Proposed methodology.
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As shown in (5), k denotes the kth spectral band of the 
image of HSI in “i” and “j”. i and j represent the pixels rows 
and columns. Spatial lags ∆1 and ∆2 along each axis of 
coordinate are generally assumed to be 1. According to 
(6), we calculate the noise covariance ΣN.

 ΣN = 0.5 (Noise image) (6)

Filters can be applied to the bandwidth that has the 
least noise level; this effectively removes noise from the 
data. Then, the data is transmitted back to its original 
coordinate system. MNF is said to be a linear transfor-
mation.

Classification
Traditionally, the accuracy of a classifier is determined by 
the number of training samples. As an outcome, increasing 
the number of labelled training samples improves the 
classifier’s performance. Although retrieving and labelling 
samples on this site is difficult. In hyperspectral imaging, 
spectral samples are made up of a combination of pure 
and impure signatures, with impure signatures containing 
more samples (HSI). As a result, the training data are 
mislabelled in the samples of the mixed signatures. It 
is simple to create new training samples with semi- 
supervised learning (SSL) by combining a few previously 
labelled training samples. SSL techniques do not solve 
the mislabelling problem, but they can help to increase 
the number of samples that are correctly labelled. In 
this way, mislabelled sample rates in training data could 
be reduced. Cycle-GAN is employed to classify the 
extracted features. In cycle-GAN, two GANs are dupli-
cated and form a ring. The transformation of class A in 
another domain to generate class A1 is a key component 
of cycle-GAN and then again converting A1 back to A, in 
which A1 represents a matching between the input class 
A and the output image “A1”. Without pairing, cycle-GAN 
has the advantage of training the pair of two classes.

Cycle-GAN for semi-supervised learning
A supervised learning task normally performs an unsuper-
vised learning task. There are a few cases where there are 
not enough training samples. Furthermore, incorporating 
new training samples may be difficult. SSL, as previously 
said, is a learning method that can learn with a minimal 
amount of training data, bridging the gap between unsu-
pervised and supervised learning. A sample generation 
of N classes illustrates how SSL can be applied to GAN. 
The discriminator is extended to N + 1 outputs, including 
information about their classification and a term that 
signifies their origin. The GAN sample generation is more 

transparent than the conventional GAN. In this proposed 
method, SSL is applied to cycle-GAN, which implies both 
trained labelled samples and trained unlabelled samples.

Cycle-GAN is a mapping model for domains X and Y. 
Two GANs are used in cycle-GAN: two generators and 
two discriminators. Generators consist of GXtoY and GYtoX 
as mapping to each domain. Discriminators consist of 
DX and DY as identification of each domain. For X → Y 
mapping, the purpose of GXtoY is to let DY identify that the 
translation data GXtoY(x) was sampled from domain Y. GXtoY 
is meant to determine whether the input sample came 
from the domain Y or was translated by DY. In the same 
way, mapping Y to X is accurate. Samples are created by 
generators based on desired distributions, i.e. replicating 
the expected distribution. The discriminator is used to 
distinguish real samples from those generated by the 
generator. The networks (generator and discriminator) 
are trained at the same time until the generator gener-
ates samples that are so realistic that the discriminator 
cannot make a distinction between real and fake samples. 
This stage is called equilibrium. When the model reaches 
this equilibrium stage, it automatically stops training. The 
input sample is passed to the encoder in the first step. It 
is compressed to represent each sample using convolu-
tions, and a sample feature is extracted from the input 
image. The representation by 1/4 of the actual sample 
size is decreased by the encoder that has three convolu-
tions. An input sample of sizes 27, 27, 3 will result in an 
encoder output of 3, 3 and 27. In the transformer section, 
the encoder output will be activated after the activa-
tion function has been applied. Transformers generally 
contain 6/9 residual blocks based on their input size. 
The outputs of transformers are used as decoder inputs. 
Two blocks of fraction stride deconvolution are used to 
increase the size of the representation.

Loss functions
Cycle-GAN has two loss functions: adversarial loss (Ladv) 
and cycle consistency loss (Lcyc). The loss function is mini-
mised by generators. Loss functions are maximised by 
discriminators.

 
( , , , )

( , , , ) ( , )
XtoY YtoX X Y

adv XtoY YtoX X Y cyc XtoY YtoX

L G G D D
L G G D D L G Gl

=

+
 (7)

taking λ as the weight for Lcyc. The loss functions are 
described as follows.

GAN uses adversarial loss as a loss function. Distance 
between probability distributions is expressed here. 
There are two terms, one mapping from domain X to 
domain Y, and one mapping from domain Y to domain X.
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( , , , )
~ ( )[log ( )] ~ ( )[log1 ( ( ))]

GAN Y

y pdata Y x pdata Y

L G D
Å y D y E x D G x

=

+ -

X Y
 (8)

where x̂ and ŷ are pair data of y and x, respectively. That 
is, ˆ ˆ ˆ ˆ ˆ ˆ, , x y x y x y x= = = = . Learning with non-pair data is 
done with the conventional loss function. The proposed 
method results in the following loss function,

 
adv

( , , , )

( , ), real sample
L ( , ) ( , )

otherwise( , ),

XtoY YtoX X y

sv XtoY YtoX

XtoY Y adv YtoX X

cyc XtoY YtoX

L G G D D

kL G G
G D L G D

L G Gl

ìïïïï= +íïïï+ïî

 (9)

where κ is the weight of Ladv.

Experimental results and 
discussion
The purpose of this section is to assess the performance 
of the proposed method on the three benchmark HSI 
datasets. We carried out experiments to compare the 
proposed method to other existing methods such as 
3D-CNN, SVM, 2D-CNN and spectral–spatial unified 
networks (SSUN). Then, the efficacy of the proposed 
technique is evaluated for various parameters.

Experimental dataset description
The efficiency of the designed model in this research is 
evaluated using existing approaches employing the three 
hyperspectral datasets. They are Salinas Scene (SS), Pavia 
University (PU) and Indian Pines (IP) (http://www.ehu.
eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes).

In this dataset, AVIRIS sensors are used to collect 
data from the IP test site. The spectral images of IP are 
145 × 145 pixels in size. Between 0.4 m and 2.5 m, the 
sensor recorded 224 spectral bands. Some of the 224 
bands have complete water absorption. After removing 
the water-absorbing bands, 200 bands are used in the 
experiments. A total of 16 class labels have been identi-
fied in the IP dataset. The PU images are collected using 
ROSIS-03 optical sensors in the wavelength range of 
0.43–0.86 μm. This HSI dataset consists of 104 spectral 
images with a size of 610 × 340 pixels and a geometry 
resolution of 1.3 m. The image of the ground truth is 
divided into nine classes. The AVIRIS sensor was used 
to capture the SS dataset in the Salinas Valley area of 
California. The water absorption area of 20 bands from 

the IP dataset was detached, thus only 204 of the original 
224 bands were used in this experiment. Each spectral 
data consist of a 3.7 m resolution and a spatial resolution 
of 512 × 214 pixels with ground truth labels of 16 classes.

Experimental setup
Deep learning methods are heavily parameterised and 
so many training samples are needed to ensure accu-
racy. For all the experiments, the values for κ and λ are 
based on the average performance of the held-out vali-
dation set in HSI. For training the cycle-GAN network, 
the parameter of the network is initialised and is listed in 
Table 1. With a batch size of 1, the models were trained, 
200 epochs for training and Adam optimisation is used to 
tune the parameters with a learning rate of 0.0001.

Then, the hyperspectral images were used for pixel-
by-pixel classification, because ground truth data were-
captured within the field of observation. In this research, 
Python is used for implementation. The proposed tech-
nique is related to the existing SVM, 3D-CNN, 2D-CNN 
and spectral–spatial unified network (SSUN) tech-
niques for various parameters. A train or test sample is 
one pixel, which is 1 × b in size in this experiment. Each 
pixel is carried as a specific class feature and classified 
by the cycle-GANs discriminator or various classifiers. 
Every pixel specifies a distinct label. The entire cube is 
composed of many pixels and labels. All HSI datasets 
are structured between 0 and 1 at the beginning of the 
experiments. Every experiment is carried out on the 
normalised hyperspectral datasets, and the data available 
is divided into two categories: 60 % for sample training 
and 40 % for sample testing. Only a few labelled images 
are used in each dataset, with five samples for each class 
randomly selected from the training samples as labelled 
samples and the rest used as unlabelled samples. The 
AA is declared and the experiments are repeated ten 
times using random selection on the sets of training and 
testing. The methods used to estimate the results of 

Index Parameters Value
1 Image size 145 × 145
2 Batch 1
3 Learning rate 1 × 10–4

4 Pool size 50
5 λ 27
6 κ 10

Table 1. Parameter initialisation of cycle-GAN.

http://www.ehu.eus/ccwintco/index.php
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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The value of the κ is determined as

 1 1

2
1

C C
ii i ii i
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i ii

t t t t

n t t

+ += =

+ +=

-
K=

-

å å
å

 (13)

Result analysis
The hyperspectral data are improved by applying the 
feature extraction technique to each dataset based on 
the classification of dissimilar objects. The output of 
the spectral band is used in the proposed classification 
procedure, which is based on the concept of an adver-
sarial network. The accuracy of the classification stage 
is improved by implementing a feature extraction tech-
nique. The SVM is the most well-known multiclass classi-
fication algorithm. Despite its limited sensitivity, SVM has 
a high classification accuracy. For comparing the results, 
SVM on a radial basis was chosen. Then, for performance 
evaluation, we choose a 2D-CNN. PCA is chosen as a 
method of pre-processing by a 2D-CNN model, which 
also chooses the first principal component. Because the 
models of 2D-CNN extract only local spatial features, 
3D-CNN chose a diverse existing model to compare with 
the spatial–spectral technique of feature extraction. It 
performs three-dimensional convolution and thus the 
model of 3D-CNN chooses a neighbourhood of K × K × B 
for each pixel. Finally, we chose SSUN as one of the 
existing models to compare results.

Comparative study
In this section, the proposed method (cycle-GAN) is 
compared to other DL-based methods, such as 2D-CNN, 

quantitative experiments by three popular indices, OA, 
AA and κ, are compared.

Evaluation parameters
The parameters Kappa statistics (κ), AA and OA were 
utilised to compare the proposed methodology classifica-
tion to existing state-of-the-art methods.

The OA is calculated by dividing the proportion of 
accurately identified samples by the total number of test 
samples. It is a C × C square matrix, where C denotes 
the dataset’s collection of class labels. The formula for 
computing OA from a confusion matrix is as follows:

 
1

C
ii

i

t
OA

t
=

=å  (10)

The set of successfully identified for class samples i is 
denoted by tij, while the total test samples are denoted by 
t. The diagonal-wise elements of the confusion matrix are 
used to calculate tij.

Average accuracy: the mean of class-wise accuracy 
is denoted by AA, and the confusion matrix is used to 
determine the accuracy of each class:

 
1

ii
i C

ijj

t
CA

t
=

=

å
 (11)

In class i, CAi stands for class-wise accuracy and the 
number of class i samples categorised into class j is 
denoted by tij, i.e. CA is the difference between the total 
set of test samples in the same class and the fraction of 
correctly classified samples for class i. The definition of 
AA is

 1

C
ii

CA
AA

C
==

å  (12)

The row and column total of the confusion matrix 
represents the likelihood of agreement between the clas-
sified and actual results. The difference between these 
two numbers is the Kappa statistic. The κ value ranges 
from –1 to 1, and as κ approaches 1, the accuracy of the 
classification increases. The sum of the row elements

1

C
ijj

t
=

æ ö÷ç ÷ç ÷çè øå
is ti+ and in the confusion matrix for class i, t+i is the addi-
tion of column elements in column-wise 

1

C
iji

t
=å .

Figure 2. Comparison results classification on the IP 
dataset.
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3D-CNN, SVM and SSUN. Figures 2, 4 and 6 show the 
classification results for Kappa coefficient, AA and OA 
on the SS, PU and IP datasets, respectively. The results 
of the experiments show that the proposed method 
extracts spatial–spectrum features effectively and has 
better classification accuracy for hyperspectral images.

On the IP dataset, Table 2 displays the obtained κ, AA 
and OA for SVM, 3D-CNN, 2D-CNN and SSUN, as well 
as the proposed cycle-GAN technique. The lower rates κ, 
AA and OA are greater than the other methods and the 

accuracy values of the cycle-GAN classification approach 
are noticeable based on the obtained results. The accu-
racy of OA is 99.80 % for cycle-GAN, and it is 98.4 % for 
SSUN, 87.99 % for 2D-CNN, 87.99 % for 3D-CNN and 
87.93 % for SVM. The obtained OA of the cycle-GAN 
method is nearer to the OA of SSUN. SVM has the lower 
rates with an OA of 87.93 %. Figure 3 illustrates the clas-
sification map and ground truth of the IP dataset. The 
classification map for the proposed approach and the 
ground truth are similar, i.e. the amount of misclassifica-
tion is minimum.

Table 3 exhibits the accuracy rates for PU. In addition, 
when compared to SVM, 3D-CNN, 2D-CNN, SSUN and 
Cycle-GAN, the proposed cycle-GAN outperforms them 
all, with an OA of 99.54 %. The least classification rates 
are acquired with the 2D-CNN method, which has an 
accuracy of OA of 87.99 %. The PU dataset map classifi-
cation is shown in Figure 3.

Figure 6 demonstrates the classification map for the SS 
dataset. Table 4 shows the classification results for the 
SS dataset. In addition, it can be seen that the proposed 
approach is more efficient than other existing methods 
in every case of OA, AA and κ. The OA of the proposed 

Methods
Indian Pines dataset

OA AA κ
SVM 87.3 81.03 86.2
3D-CNN 91.1 89.58 87.98
2D-CNN 87.99 85.75 91.85
SSUN 98.4 96.23 97.14
Proposed method 
cycle-GAN

99.80 97.56 98.72

Table 2. Evaluation parameters classification for the IP data-
sets using various methods.

Figure 3. IP dataset classification map of (a) ground truth, (b) 2D-CNN, 
(c) SVM, (d) SSUN, (e) 3D-CNN, (f) proposed and (g) legend.
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approach is 98.57 %, AA is 99.88 % and κ is of 99.57 %. 
The obtained OA with Cycle-GAN is 98.57 %, which is 
nearer to SSUN.

Another parameter used for the comparision of 
proposed technique to the existing method is execu-
tion time. Deep learning models are designed to reduce 
computational complexity. The proposed technique 
reduces computations, thereby reducing the training time 
for classification and feature extraction.

Table 5 illustrates the time of training and time of testing 
for existing and proposed techniques on the datasets of 
SA, IP and PU. And, the time of training is measured in 
terms of minutes, the time of testing by seconds here.

Figures 8–10 represents the testing and training time 
for the proposed technique in comparison to the existing 
methods despite computing the hyperspectral image 
classification from the dataset.

Analysis of parameters in cycle-GAN
λ and κ are the parameters of cycle-GAN. The input size 
of spatial patches is denoted by λ, which is set to current 
approaches. The updated intervals of G1 and G2 gener-
ators in relation to discriminator D are represented by κ. 
It is set to the existing technique. κ controls the balance 
between generators and discriminators. Cycle-GAN does 
not extract enough information regarding the spatial 
distribution of HSI, when λ is too small. In contrast, if λ is 
too large, Cycle-GAN is unable to represent the samples 
accurately. Finally, 27 is selected for λ among the three 
hyperspectral data sets and κ is equal to 10 or 13. Here, 
κ is selected as 13, so that the OA of the three data sets 
achieves the highest peak values. Hence, the experi-
ment revealed that, by adjusting the weight to suitable 

Figure 4. Classification comparison results on PU dataset.

Methods
University of Pavia dataset
OA AA κ

SVM 90.71 92.55 87.71

3D-CNN 91.3 86.19 88.21

2D-CNN 87.99 85.75 91.85

SSUN 99.46 98.03 98.04
Proposed method 
Cycle-GAN

99.54  98.32 97.42

Table 3. Classification of parameters evaluation for the PU 
datasets using different methods.

Methods
Salinas Scene dataset

OA AA κ

SVM 90 95.52 88.82

3D-CNN 93.59 96.99 94.26

2D-CNN 87.99 85.75 91.85

SSUN 98.82 98.21 97.75

Proposed method 
Cycle-GAN

98.57 99.88 99.57

Table 4. Evaluation parameters classification for the SS data-
sets using various methods.



10 A Semi-Supervised Cycle-GAN Neural Network for Hyperspectral Image Classification with Minimum Noise Fraction

Figure 5. PU dataset classification map. (a) Ground truth, (b) 2D-CNN, (c) 
SVM, (d) SSUN, (e) 3D-CNN, (f) proposed and (g) legend.

Figure 6. Classification comparison results on SS dataset.
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Figure 7. SS dataset classification map. (a) Ground truth, (b) 2D-CNN, (c) 
SVM, (d) SSUN, (e) 3D-CNN, (f) proposed and (g) legend.

Figure 8. Testing and training time in the IP dataset.
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parameter value results in reaching the highest classifica-
tion accuracy.

In terms of factors for evaluating classification and 
computational time, the designed architecture outper-
forms all existing strategies, and its classification map is 
compared with the ground truth with high classification 
accuracy.

In addition, when compared to other spectro–spatial 
classification methods, the proposed method has 
improved performance and provides very satisfactory 
classification, according to the comparative analysis. As 
a result, it is possible to preserve spatial and spectral 
information while reducing the size of hyperspectral data 
to improve classification accuracy. Also, the proposed 
cycle-GAN is not supreme in aspects of computation 

time, the time of processing is still competitive with 
several other methods of classification.

Conclusion
Many applications rely on the classification of remote 
sensing images. These include natural disaster detec-
tion, coverage management and land resource utilisation. 
As a result, the cycle-GAN architecture classification is 
proposed. Three benchmark datasets are used to compare 
experimental results to state-of-the-art methods. The 
proposed architecture focuses on hyperspectral images 
classification from remote sensing images. The OA, AA 
and Kappa coefficients have all increased by varying 

Figure 9. Testing and training time in the PU dataset.

Figure 10. Testing and training time in SS dataset.
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degrees in the SS, IP and PU datasets. Furthermore, 
the cycle-GAN is not the best in terms of processing 
speed, and its computation time is still competitive with 
many other classification methods. It is considered to 
improve the network structure in the future. In this study, 
the proposed method also generates images without 
using labels, and its categories are unknown. As a result, 
each category’s ability to extract features has improved 
uniformly.
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