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Multisensor data fusion has become a hot topic in the remote sensing research community. This is thanks to significant technological advances and 

the ability to extract information that would have been challenging with a single sensor. However, sensory enhancement requires advanced anal-

ysis that enables deep learning. A framework is designed to effectively fuse hyperspectral and lidar data for semantic segmentation in the urban 

environment. Our work proposes a method of reducing dimensions by exploring the most representative features from hyperspectral and lidar 

data and using them for supervised semantic segmentation. In addition, we chose to compare segmentation models based on 2D and 3D convolu-

tional operations with two different model architectures, such as U-Net and ResU-Net. All algorithms have been tested with three loss functions: 

standard Categorical Cross-Entropy, Focal Loss and a combination of Focal Loss and Jaccard Distance—Focal–Jaccard Loss. Experimental results 

demonstrated that the 3D segmentation of U-Net and ResU-Net with Focal and Focal–Jaccard Loss functions had significantly improved perfor-

mance compared to the standard Categorical Cross-Entropy models. The results show a high accuracy score and reflect reality by preserving the 

complex geometry of the objects.

Keywords: semantic segmentation, 3D segmentation, urban environment, hyperspectral imaging, lidar, hyperspectral lidar fusion, data fusion, 
deep learning, multisensor fusion, remote sensing

Introduction
An urban environment is a complex mosaic of diverse 
materials and surfaces constantly undergoing natural 
and anthropogenic processes resulting in rapid urbani-
sation.1,2 This introduces environmental and ecological 

challenges, such as urban flooding, poor air quality, urban 
heat island issues and microclimate changes.3–6 Due to 
these challenges and the complex and heterogeneous 
nature of urban areas, a proper advanced urban analysis 
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is a prerequisite to getting information about urban land 
surfaces.
Over the last decades, passive and active remote 

sensing has been widely used in diverse analyses of 
urban environments, including land cover/material abun-
dance mapping,7,8 vegetation monitoring,9–12 urban and 
suburban use analysis,13 and three-dimensional urban 
geometry investigation.14–16 Such advanced analyses are 
often achievable considering spectral, spatial and struc-
tural properties.7,17 One sensor is often insufficient to 
obtain all that information.18 This can be overcome with 
multisensory applications such as the fusion of hyper-
spectral (HS) data with lidar (light detection and ranging) 
scanning data,19–22 synthetic aperture radar (SAR)23 or 
thermal sensors.24

Hyperspectral imaging (HSI) provides detailed spectral 
information about materials, classifying complex urban 
structures and effectively distinguishing pixel-based soil, 
water, vegetation and impervious surfaces.25 However, 
the classification is only considered at the near-surface 
without any elevation information. A land cover classifi-
cation based on HS data in the spectral domain has been 
proposed in many studies, applying shallow machine 
learning methods.26,27 However, a pure spectral anal-
ysis is often insufficient in object-based classification 
since it does not consider the spatial context—producing 
salt–pepper noise on the resulting image.28 An object is 
a mixture of materials and structures differently sensi-
tive to various atmospheric factors and illumination. This 
results in distorted results, bias and incomplete analysis.
Lidar scanning in the analysis of urban areas focuses 

primarily on geometric and textural information of objects 
and surfaces.29 Lidar can improve the urban land cover 
analysis, especially of objects of the same material but 
differing in geometry, height and structure, such as high 
and low vegetation.19,30 Since lidar, as an active sensor, is 
less sensitive to atmospheric influence and illumination, 
which challenge HS-based semantic segmentation, it can 
recompensate with a physical shadow correction for HS 
data analysis.31,32

Therefore, recent technological advances make multi-
sensory fusion possible to exploit the potential of HS and 
lidar properties for urban analysis (HL-Fusion).33–38 Such an 
HL-Fusion can be conducted on different levels focusing 
on the fusion of various data, products and application 
purposes based on physical and empirical approaches.39 
An HL-Fusion involves a physical understanding of sensors 
and awareness of the increased complexity of the anal-
ysis process. Therefore, no general process chain for an 
HL-Fusion exists yet, although deep learning networks 

have become promising for different classification and 
segmentation purposes in recent years. However, classi-
fications based on deep learning models, such as convo-
lutional neural networks (CNN),40,41 deep residual U-Net 
(deep ResU-Net)42 or deep residual net (deep Resnet)33 are 
often carried out for HS or lidar data separately.
In urban land cover classification based on HS and 

lidar data, it is crucial to develop an algorithm that deals 
effectively with high-dimensional data, considers spec-
tral, spatial and geometrical information simultaneously, 
and is stable and transferable to other areas with similar 
problem setups. Since HS data are high-dimensional (3D 
hyperspectral data cubes), they contain inherent spatial 
(x, y) and spectral information (λ). One of the main char-
acteristics of an HS image is that it exhibits a strong 
correlation between the adjacent bands in the spectrum. 
Therefore, segmentation models that consider spatial 
features (2D convolutional operations) and the spectral 
dimension (3D convolutional operations) are believed to 
improve the performance since they allow for the finding 
of more patterns (Figure 1).

The 2D convolutional operation applied to hyperspec-
tral and lidar data is powerful but has some limitations, 
especially in the spectral domain, since a 2D kernel slides 
only in the x and y directions. On the other hand, the 3D 
convolutional operation preserves the spectral informa-
tion of the input HS data by moving in all three direc-
tions: x, y, λ. Furthermore, 3D convolutional operations 
are designed to exploit spatial continuity further and 
suppress noisy prediction.43

While many different 3D segmentation networks have 
been proposed in recent studies43–46 for HL-Fusion, espe-
cially in urban environments, little research about 3D 
convolution-based networks for fused HS and lidar data 
exists.47 Inspired by HL-Fusion and deep learning, we 
propose a method to analyse fused HS and lidar data for 
urban land cover classification. We compare two model 
architectures—U-Net and deep ResU-Net (residual deep 

Figure 1. Comparison of 2D and 3D convolutional oper-
ations.
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U-Net) at 2D and 3D convolutional operation levels 
applying different loss functions for multiclass segmenta-
tion. The two key contributions of this study are:
1)	We suggest the design of an HL-Fusion on the feature 
extraction level for urban land cover classification.

2)	We present the first study in HL-Fusion using 3D 
convolutional operations in U-Net and deep ResU-Net 
for urban land cover classification.

Theoretical background
Segmentation models
U-Net
The U-Net architecture, introduced in biomedical image 
segmentation by Ronneberger et al.,48 is based on convo-
lutional neural network layers. The architecture copies 
low-level features to the corresponding high-level 
features (Figure 2).
Due to the contracting path propagating between 

low-level features and high-level semantics in a facili-
tated way, U-Net takes context into account and hence 
helps to localise objects precisely.

ResU-Net
A residual neural network is built of stacked residual 
units.49 The intuition behind the residual network is to 
introduce skip connections that prevent accuracy degra-
dation in very deep networks with multiple hidden layers 
(Figure 3).50

Skip connections learn identity functions that help follow 
higher layers perform at least as well as the previous lower 
layers. Therefore, information loss is reduced and the 
risk of vanishing gradients during training decreases. The 
residual unit facilitates the training and skip connections, 
making the segmentation stable and transferring the infor-
mation from one layer to another without any information 
loss. This allows a calculation with fewer parameters.42 The 
3D ResU-Net consists of three parts: encoding, bridge 
and decoding (Figure 4). Bridge connects both encoding 
and decoding paths. The encoding part transforms the 

Figure 2. The U-Net architecture used in our study.

Figure 3. Deep residual network unit.
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input into a compact representation. The decoding part 
puts the compact representations into a pixel-wise cate-
gorisation. All three parts include residual units built of a 
batch normalisation layer, a ReLU activation layer and a 
3D convolutional layer. Both encoding and decoding paths 
do not contain a pooling operation that downsamples the 
output to maintain the spectral and spatial dependency in 
high-dimensional HS and lidar data.

Losses
A loss function must be specified to optimise the weights 
of the segmentation algorithms. The selection of the loss 
function is crucial and can significantly impact model opti-
misation. In Reference 51, Ma compares and categorises 
different loss functions; Duque et al.52 divide them into 
two main groups: statistical-based and geometric-based 
loss functions. While statistical-based loss functions try to 
minimise the dissimilarity between distributions (derived 
from Kullback–Leibler divergence), geometric-based 
functions focus on overlapping regions between predic-
tion and ground truth. Our work compares two statisti-
cal-based [Categorical Cross-Entropy (CE) Loss and Focal 
Loss] and one geometric-based representative (Jaccard 
Loss). Furthermore, to get the best out of both, we define 
the Focal–Jaccard Loss, combining Focal and Jaccard 
losses in an additive way.
Only the (ground truth) positive class contributes to 

the loss function as we use one-hot encoded target for 

training the network. In our notation, pt is the probability 
of assigning a pixel t to its true class resulting from a 
SoftMax activation. The SoftMax function normalises a 
multidimensional network output to a probability distri-
bution over the model classes. The desired result is that 
the probability for the true class is significantly higher 
than for the other classes.
Widely used in classification problems, the CE Loss 

function is defined as

	 CE(pt) = –log(pt).	 (1)

Hence, the higher pt is, the better the prediction and 
the lower the CE Loss is. Although CE is quite common 
and often the first choice when selecting loss functions, it 
shows weakness when applied to a model with imbalanced 
classes.53 Suppose the dataset is heavily imbalanced, and 
the number of easy-to-classify samples is much higher 
than the number of difficult-to-classify samples. In that 
case, the CE Loss will learn more representations from 
easy-to-classify samples instead of representations from 
hard-to-classify samples.
Furthermore, the loss for pixels that are easy to classify 

(usually the background) is relatively high compared to 
hard-to-classify samples (such as houses or streets), as 
shown in Figure 5. As an example, we compare the CE 
Loss for pt = 0.6 and pt = 0.3. While for pt = 0.6, the correct 
pixel classification is almost certain, and the CE Loss is 
still around 0.5 compared to pt = 0.3, where a correct 

Figure 4. The ResU-Net architecture implemented in our study.
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classification is unlikely, but where the loss between 1 
and 1.5 is not much higher than 0.5. For this reason, 
Tsung-Yi Lin et al.53 invented Focal Loss, which extends 
CE Loss by a multiplicative weight term α (assigning a 
higher weight to under-represented classes) and a modu-
lating factor (1 – pt)

y, where γ > 0 is a shape parameter. 
Focal loss is defined as

	 FL(pt) = –αt(1 – pt)
γlog(pt).	 (2)

If γ = 0 and αt = 1, the Focal Loss is equal to CE Loss. Both 
γ and αt are hyperparameters that control the learning 
process. αt helps weight classes and balance the impor-
tance of positive and negative labelled pixels.53 The higher 
γ gets, the more Focal Loss focuses on difficult pixels, see 
Figure 5 where it does not penalise a lot when pt ≳ 0.6, 
i.e. when the certainty in correct prediction increases. 
Nevertheless, if γ is too high, already weak probabilities 
would get a very low loss—a good hyperparameter selec-
tion is, therefore, essential. Different strategies can be 
found in the original paper.53 In our work, we set γ = 2 and 

0.25t ta = " .
The Jaccard Loss relies on the Jaccard Index,52 

measuring the Intersection over the Union of two sets. 
For our one-hot encoded setup, we compute the Jaccard 
Loss for a single sample t as
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which is a decreasing linear function with ε representing a 
small constant. In our case, the function’s slope changes 

slightly, but in the original definition, it intends to prevent 
division by zero. By default, we set epsilon, ε, to 1.
The fourth loss in our study is the additive combination 

of Focal Loss and Jaccard Loss which we refer to Focal–
Jaccard Loss (FJL). The loss is given as
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In Figure 5, we observe that FJL behaves like Focal Loss 
for small pt, whereas it converges towards Jaccard Loss 
for increasing pt.

Dimension reduction: spectral unmixing
Airborne-based optical data are characterised by high 
spectral resolution but correspondingly lower spatial 
resolution.54 A single scene pixel usually contains various 
materials creating a mixed pixel.55 In order to separate 
urban materials regardless of pixel size and mixture 
complexity, spectral unmixing is used to define the 
amount of a given material in a pixel (abundance map). 
Various scientific fields have applied spectral unmixing in 
HS data analysis for decades.56–60

Here, abundance maps for each endmember are gener-
ated with unsupervised endmember extraction and spec-
tral unmixing, simplifying the analysis and effectively 
reducing dimensions. Hence, we avoid a curse of dimen-
sionality,61 which occurs easily when working with limited 
training data. In such scenarios, the deep learning model 
has to deal with many features to achieve reliable and 
accurate results.19

Figure 5. Comparison of the four loss functions used in this study. The limit towards 0 for CE 
Loss, Focal Loss and Focal–Jaccard Loss is infinite (due to the logarithm).
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N-FINDR
The N-FINDR algorithm for endmember extraction was 
introduced by Winter.62 This iterative approach aims to find 
endmembers corresponding to the purest spectra in the 
scene. N-FINDR assumes that the largest volume formed 
by an n-simplex with vertices can only be achieved by those 
purest pixels. The algorithm finds the final endmembers 
by randomly selecting the pixel set as initial endmembers, 
further iteratively investigating all spectra in the scene and 
searching for the largest volume of the simplex. The exact 
position of the defined endmember is then used to set 
the original spectrum before the dimension reduction as 
the final endmember signature. Each pixel in the scene is 
described as a linear mixture of the defined endmembers 
using non-negativity-constrained least squares fitting.63

Dataset
Terratec AS Company collected HS and lidar data in June 
2021 over Baerum municipality in Norway (Figure 6).

The dataset represents a suburban environment with 
typical urban settlements, infrastructure and diverse 
vegetation. The airborne-based data were acquired under 
cloud-free conditions, including HS images and lidar-
based 2.5-dimensional rasters. The HS data consist of 
images from HySpex sensors: VNIR-1800 (0.4–1.0 µm) 
and SWIR-384 (1–2.5 µm) with 0.3 m and 0.7 m spatial 
resolution, respectively. The lidar data were acquired 
using a Riegl VQ-1560i laser scanner, with five pulses per 
m2 and intensity at 1.064 μm relevant for urban environ-
ments. The hyperspectral data were georeferenced and 
orthorectified by the Terratec AS using the PARGE soft-
ware (Parametric Geocoding and Orthorectification for 
Airborne Optical Skanner Data).64 The program corrects 
the geometry for each HS image pixel using a digital 
elevation model of the region, GPS position and atti-
tude (ReSe Applications). The geocoded radiance data 
were converted to reflectance, adjusting illumination 
levels using ATCOR-4 (Atmospheric and Topographic 
Correction for airborne imagery). Absorption features 
associated with H2O and OH close to bands at 1.4 μm 

Figure 6. Study area representing a suburban environment in Høvik, near the capital Oslo in Norway.
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and 1.9 μm were excluded from further analyses. The 
images from all flight lines with residual 176 channels for 
VNIR and 262 channels for SWIR were mosaicked sepa-
rately using ENVI software (Environment for Visualizing 
Images). The noisy bands and outliers were set to bad 
bands and excluded from analyses resulting in 398 hyper-
spectral bands. The mosaic layers of VNIR and SWIR 
were stacked by applying the Savitzky–Golay filter65 to all 
spectra. Our study area is located in Høvik with a coor-
dinate extent of 588060, 6641500; 588878, 6641735 
WGS 84/UTM zone 32N (Figure 6). The dataset contains 
the Joint Geospatial Database (FKB) that includes poly-
gons of buildings, roads and other urban surfaces from 
2010 to 2019. We carefully controlled FKB-polygons 
and adapted some modifications for labelling data. The 
residual classes (high and low vegetation) were extracted 
automatically.

Proposed method
Semi-automatic label preparation
In our analysis, we used five main classes extracted from 
the study area: low vegetation, high vegetation, buildings, 
roads and railway. Our segmentation is limited to these 
classes to facilitate the analysis and verify and deepen 
the understanding and optimisation of the method. In the 
semi-automatic label extraction, we identified high and 
low vegetation using the advantage of the high amount 
of relevant HS and lidar features. First, we masked out 
classes assigned to buildings to exclude potential errors. 
We applied the Normalised Difference Vegetation Index 
to HS data,66 calculating the average for the red REDx  
(660–670 nm) and near infrared band  NIRx  (810–835 nm), 
respectively:

	 NIR RED

NIR RED

x x
NDVI

x x
-

=
+

	 (5)

We concatenated the vegetation mask with raster-
based lidar features such as normalised Digital Surface 
Model, surface roughness and multiple returns. Significant 
are multiple returns, which distinguish between low 
vegetation and high vegetation. The assumption is that 
high vegetation is represented by more returns than low 
vegetation, usually located at ground points or imper-
vious surfaces through which the laser does not pene-
trate multiple times. The rest of the classes of interest, 
such as roofs, railways and roads, were visually validated 
and extracted from the FKB database. The ground truth 
map is displayed in Figure 7.

Endmember extraction and abundance maps
Our study separately implemented state-of-art itera-
tive endmember extraction (EA) algorithm N-FINDR62 
for HS and lidar data. We applied the non-negativity- 
constrained least squares algorithm for abundance 
map generation. The preprocessed reflectance normal-
ised image in the HS analysis was used to retrieve 27 
endmembers. For lidar EA, we built a lidar feature space 
where the five most relevant raster-based features have 
been extracted, including slope, the intensity from the 
first return, multiple returns, normalised Digital Surface 
Model (nDSM) and point density. All the features have 
been then normalised separately before EA. The initially 
extracted endmembers for both HS and lidar data were 
used to generate abundance maps for each endmember, 
retrieving 32 abundance maps.

Semantic segmentation
In this study, we applied two semantic segmentation 
model architectures: a U-Net and a deep residual U-Net 
that takes full advantage of U-Net architecture and a 
residual neural network. Both architectures were tested 
on two- and three-dimensional convolutions. All four 
model types (2D U-Net, 2D ResU-Net, 3D U-Net and 
3D ResU-Net) performed with different loss functions 

Figure 7. Ground truth map of the study area with five classes.
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described above, resulting in 12 segmentation model 
combinations (Figure 8).

Implementation details
All 12 segmentation models were implemented in Python 
using Tensorflow, including GPU functionalities.67 In all 
models, the maximum number of epochs was set to 500; 
however, we applied an early stopping function to save 
time, stop training when the model stopped improving 
and avoid model overfitting. For both U-Nets and ResU-
Nets, we applied the Adam optimiser68 with the learning 
rate of 1e–03, epsilon of 1e–07, β1 = 0.99 and β2 = 0.999. 
We implemented the Matthews Correlation Coefficient 
(MCC) to evaluate the algorithm’s performance. MCC 
deals with unbalanced classes calculating the accuracy 
for each class separately.69 Compared to F1-score, it 
takes all true positives, true negatives, false positives 
and false negatives into account, giving a more reliable 
performance result. MCC is bounded between –1 and 
1, where –1 means that all predictions are incorrect, 1 

indicates that all predictions are correct and a score of 
0 denotes random predictions. Hence, the higher MCC 
gets, the better the results are. The input data dimen-
sions for both 2D and 3D convolution-based models can 
be found in Table 1, splitting the study area into 80 % 
training and 20 % testing. The split between training and 
validation is carefully adapted so that all defined classes 
are involved equally to ensure that training data contain 
all known classes (Figure 9).
The input data for the 2D model consist of N number 

of patches with a size of 64 × 64 pixels and 32 abun-
dance maps from both HS and lidar data. The ground 
truth for the 2D model contains five classes with the 
same N number and size of patches as the input. For 
the 3D model, the input data have to be expanded by 
one additional dimension compared to the 2D model. In 
the ground truth for the 3D model, we must stack the 
ground truth values 32 times for each abundance map, 
creating a matrix with the dimension N × 64 × 64 × 32 × 5 
(Table 1).

Figure 8. Twelve semantic segmentation combinations were implemented 
in the study.

Figure 9. Training and test data separation. Green and blue outlines represent training and test sets, respectively.
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Experimental results and 
discussion
Four segmentation methods, including 2D U-Net, 2D 
ResU-Net, 3D U-Net and 3D ResU-Net, with three 
different loss functions: CE, Focal Loss and combined 
Focal–Jaccard Loss, were compared and evaluated. Table 
2 presents the experimental results of all segmentation 
models reporting the MCC metric for all five classes and 
the overall accuracy of the test set. In this section, the 
results are presented and discussed in detail.
In order to test and compare 2D and 3D convolutional 

operation-based segmentation models, we configured 
U-Net and ResU-Net models for 2D and 3D convolutions 
and kept the parameters consistent by comparing loss 
functions such as CE, Focal Loss and Focal–Jaccard Loss. 
All segmentation maps from the whole scene are shown 
in Figure 10.

Model evaluation
Based on the results presented in Table 2, it can be noted 
that the best results for individual classes (shaded fields in 
grey) were obtained mainly by models based on 3D convo-
lutional operations. Comparing the number of classes best 
identified in the model, the 3D ResU-Net with combined 
Focal–Jaccard Loss outperforms, recognising 98 % of high 
vegetation and 99 % of buildings and railways.
Both 2D and 3D segmentation algorithms within the 

ResU-Net model architecture have shown that using 
either Focal Loss or combined Focal–Jaccard Loss signifi-
cantly outperforms the overall accuracy score (based on 
MCC) of CE.
Looking at the overall accuracy of each model, we can 

derive the two best models, such as 2D U-Net with CE 
and 3D ResU-Net, using Focal Loss. Looking at the total 
segmentation result for each class, these two models 
achieved more than 80 % for each class. In the case of 
the simplest of the proposed models (2D U-Net), CE 
performed almost as well as the best of the models (3D 
ResU-Net), obtaining slightly lower accuracy than 3D 
ResU-Net. The 2D U-Net, despite the simplicity, is more 
stable and not sensitive to loss functions.

Single class accuracy
Starting the interpretation of the accuracy of a single 
class, we want to point out that the most challenging class 

2D model 3D model

Input N × 64 × 64 × 32 N × 64 × 64 × 32 × 1
Ground 
truth

N × 64 × 64 × 5 N × 64 × 64 × 32 × 5

Table 1. The input data dimensions for both 2D and 3D con-
volution-based models.

Figure 10. Qualitative comparison of 2D (c–h) and 3D (I–n) convolution-based model in 
urban land cover classification. a) HS image in RGB colour representation, b) ground truth 
with five classes such as low vegetation, high vegetation, building, road and railway.
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Figure 10. Qualitative comparison of 2D (c–h) and 3D (I–n) convolution-based model 
in urban land cover classification. c) 2D U-Net CE, d) 2D U-Net Focal Loss, e) 2D 
U-Net Focal–Jaccard loss, f) 2D ResU-Net CE, g) 2D ResU-Net Focal Loss, h) 2D 
ResU-Net Focal–Jaccard Loss, i) 3D U-Net CE, j) 3D U-Net Focal Loss.
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to identify was the low vegetation class, reaching the 
accuracy of most models from 54 % to 71 %. However, 
in the 2D U-Net with CE (Figure 10c) and 3D ResU-Net 
with Focal Loss (Figure 10m), the low vegetation class 
was correctly classified, reaching 82 % and 94 %, respec-
tively. Any supervised classification requires ground truth 
preparation. In our case, dealing with an airborne-based 
dataset, our ground truths are extracted directly from the 

image (see above), where low and high vegetation are 
extracted from the laser features. This way speeds up the 
labelling process but can cause, in particular, sparse low 
vegetation pixel labelling as “not present”.
All other defined classes belonging to impervious 

objects were classified correctly, even in 2D convolu-
tion-based models. We assume that separating these 
three classes, such as buildings, roads and railways, was 

2D U-Net 2D ResU-Net 3D U-Net 3D ResU-Net

CE Focal
Focal–

Jaccard CE Focal
Focal–

Jaccard CE Focal
Focal–

Jaccard CE Focal
Focal–

Jaccard
Low 
­vegetation 0.82 0.59 0.64 0.71 0.63 0.62 0.61 0.56 0.63 0.54 0.94 0.61

High 
­vegetation 0.95 0.89 0.91 0.59 0.94 0.98 0.88 0.82 0.91 0.82 0.86 0.98

Building 0.94 0.99 0.99 0.89 0.97 0.99 0.97 0.99 0.98 0.16 0.95 0.99

Road 0.90 0.97 0.96 0.83 0.95 0.94 0.96 0.95 0.98 0.21 0.92 0.97

Railway 0.95 0.99 0.99 0.05 0.88 0.95 0.99 0.93 0.99 0.10 0.98 0.99

Overall 
­accuracy 
(MCC)

0.84 0.80 0.82 0.62 0.80 0.81 0.78 0.73 0.80 0.31 0.88 0.84

Table 2. Segmentation accuracies obtained by MCC. The grey shaded boxes indicate the highest accuracy score comparing all 
models for the five classes. Fields shaded in green represent the best accuracy result obtained by comparing loss functions 
within one model.

Figure 10. Qualitative comparison of 2D (c–h) and 3D (I–n) convolution-based 
model in urban land cover classification. k) 3D U-Net Focal–Jaccard Loss, l) 3D 
ResU-Net CE, m) 3D ResU-Net Focal Loss, n) 3D ResU-Net Focal–Jaccard Loss.
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supported by a preprocessing method for HS and lidar 
data and a proper selection of lidar features based mainly 
on the review article from Kuras et al.19

Loss comparison
Considering the choice of loss functions in each model, 
Focal and combination of Focal–Jaccard Loss outperform 
because Focal Loss converges to a lower loss faster than 
CE, focusing more on classes that are difficult to predict 
(Figure 5). Measurements on Jaccard distance take more 
time than Focal Loss and need to be close to the truth 
before the loss converges. These losses fill each other out 
and take advantage of both functions: handling extremely 
imbalanced data and recognising objects.

2D and 3D models
Several important aspects can be noted by visually 
comparing 2D and 3D models (Figure 10). First, some-
times in 2D convolution-based segmentation models, 
despite their comparable accuracy score to 3D models, 
so-called edge effects appear which are the ends of the 
64 × 64 patches into which the whole scene has been 
divided before feeding into the segmentation algorithm 
(Figure 11).
This problem is well-known in 2D patch-based image 

segmentation processes and has been reported in several 
studies.70,71 In order to avoid additional post-processing 
steps and the potential generation of other artefacts to 
the final segmentation map, we compared 3D segmen-
tation models in which the problem of edge effects has 
been mitigated. The 3D ResU-Net with CE (Figure 10l) 
is an exception, where the parameters were probably 
chosen incorrectly. However, since we compare the same 

2D and 3D model architectures, we necessarily wanted 
to present all the results.
Another aspect that needs to be discussed is geometric 

accuracy. In Figure 10 and Figure 11, we can see (espe-
cially in the building class) that 2D and 3D models do not 
perform well with objects with irregular shapes. Often, 
we can see inaccurate blurred contours and, in some 
places, complete disruption of the geometry. However, in 
the 2D U-Net with CE and the 3D ResU-Net with Focal 
Loss, the geometric of identified objects/surfaces are 
adequate or close to reality and ground truth.
It must be noted that an important issue appeared 

in the attempt to classify the “unknown” class. Only 
in the case of the 2D U-Net with CE and the 3D 
ResU-Net with Focal Loss undefined pixels (no 
ground truth) were correctly identified as “unknown”, 
while the rest of the segmentation models assigned 
a class to each pixel, creating many false positives. 
Identification of unknown pixels is crucial, especially 
in a heterogeneous complex urban environment 
where our selected scene consists of more than the 
five defined classes. This “unknown” class has been 
assigned to those pixels where no defined class has 
reached 50 % in the prediction.
Furthermore, the proper input preparation and the 

reduction of dimensions through endmember extraction 
allowed us to skip statistical transformation methods, 
such as Principal Component Analysis (PCA). Due to its 
purely statistical nature, PCA loses spectral information 
since the spectral positions are not considered in the 
calculations.72 Hence the extracted (spectral) endmem-
bers can be used for further analysis or to generate local 
spectral libraries.

Figure 11. 2D and 3D model segmentation map clippings. In both 2D models, we can see edge effects that 
have been compensated for in 3D models. White arrows and dashed rectangles point to the exact positions of 
edge effects.
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The last but not least aspect relates to time consump-
tion comparing 2D and 3D segmentation models. Due to 
the requirements of advanced calculations in 3D convolu-
tional operations, 3D models took about 20 times longer 
than 2D models. For this reason, with a simple segmen-
tation of high-dimensional HS and lidar data, simple 2D 
models seem to be sufficient. However, we are convinced 
that analysis based on much more advanced segmenta-
tion, intraclass segmentation, as well as identification of 
materials and their properties in an urban environment 
will require the choice of 3D convolutional operations 
despite the time consumption.

Conclusion and future 
perspectives
This paper explores diverse deep learning models 
with different parameters and convolutional dimen-
sions for urban land cover classification using fused 
HS and lidar data. In particular, four deep learning 
models have been compared, 2D-U-Net (Figure 10c–e), 
2D-ResU-Net (Figure 10f–h), 3D-U-Net (Figure 10i–k) 
and 3D-ResU-Net (Figure 10l–n). All models have been 
trained with three different loss functions: state-of-art 
CE, Focal Loss, and a combination of Focal Loss and 
Jaccard Loss (Focal–Jaccard Loss).
As a whole, we can conclude that segmentation of both 

U-Net and ResU-Net performed very well, especially 
implementing Focal and Focal–Jaccard Loss functions. 
However, an important factor to consider is the choice of 
the model architecture and the proper selection of param-
eters. Despite the out-performance of the 3D U-Net 
and Res-U-Net models, the training often requires more 
training data than analysing shallow machine learning or 
deep 2D convolution-based algorithms. Alternatively, 
to save time, reduce computational resources and limit 
the need for a large amount of training data, we will 
explore the potential of hybrid 2D–3D models and carry 
out analyses based on ensemble learning where several 
models are combined. Thus, it is possible to reduce the 
number of parameters in the deep learning model and, at 
the same time, use the information from the 3D convolu-
tion-based algorithm.
Another important factor to consider when working 

with image segmentation on HS and lidar data is the 
correct labelling of the ground truth. Due to the fuzzy 
class assignment of some pixels responding from semi-
automatic label preparation, the network may try to learn 

incorrect patterns. Further, a single pixel can contain 
more than one class, but the model assumes that the 
pixel contains only a single class, which also hinders the 
learning process. Hence, in future research, we will focus 
on unsupervised segmentation to avoid other errors in 
creating ground truths and develop a method to identify 
unknown classes, such as testing open set recognition for 
deep learning algorithms, e.g. for change detection based 
on HL-Fusion data.
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