
Correspondence
Jun-Li Xu (junli.xu@ucd.ie)

Received: 14 September 2020
Revised: 4 December 2020
Accepted: 21 December 2020
Publication: 24 December 2020
doi: 10.1255/jsi.2020.a19
ISSN: 2040-4565

Citation
J.-L. Xu, C. Riccioli, A. Herrero-Langreo and A.A. Gowen, “Deep learn-
ing classifiers for near infrared spectral imaging: a tutorial”, J. Spectral
Imaging 9, a19 (2020). https://doi.org/10.1255/jsi.2020.a19

© 2020 The Authors

This licence permits you to use, share, copy and redistribute the paper in
any medium or any format provided that a full citation to the original
 paper in this journal is given, the use is not for commercial purposes and
the paper is not changed in any way.

1J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020)
volume 1 / 2010
ISSN 2040-4565

In thIs Issue:

spectral preprocessing to compensate for packaging film / using neural nets to invert
the PROSAIL canopy model

JOURNAL OF
SPECTRAL
IMAGING

JsI
Peer Reviewed Tutorial openaccess

Deep learning classifiers for near infrared
spectral imaging: a tutorial

Jun-Li Xu,a,* Cecilia Riccioli,b Ana Herrero-Langreoa and Aoife A. Gowena

aUCD School of Biosystems and Food Engineering, University College of Dublin (UCD), Belfield, Dublin 4, Ireland
bFaculty of Agriculture and Forestry Engineering, Department of Animal Production, University of Cordoba, Cordoba, Spain

Contacts
J.-L. Xu: junli.xu@ucd.ie; https://orcid.org/0000-0002-4442-7538
C. Riccioli: https://orcid.org/0000-0002-0998-7150

A. Herrero-Langreo: https://orcid.org/0000-0003-3258-6248
A.A. Gowen: https://orcid.org/0000-0002-9494-2204

Deep learning (DL) has recently achieved considerable successes in a wide range of applications, such as speech recognition, machine translation

and visual recognition. This tutorial provides guidelines and useful strategies to apply DL techniques to address pixel-wise classification of spec-

tral images. A one-dimensional convolutional neural network (1-D CNN) is used to extract features from the spectral domain, which are subse-

quently used for classification. In contrast to conventional classification methods for spectral images that examine primarily the spectral context,

a three-dimensional (3-D) CNN is applied to simultaneously extract spatial and spectral features to enhance classification accuracy. This tutorial

paper explains, in a stepwise manner, how to develop 1-D CNN and 3-D CNN models to discriminate spectral imaging data in a food authentic-

ity context. The example image data provided consists of three varieties of puffed cereals imaged in the NIR range (943–1643 nm). The tutorial

is presented in the MATLAB environment and scripts and dataset used are provided. Starting from spectral image pre-processing (background

removal and spectral pre-treatment), the typical steps encountered in development of CNN models are presented. The example dataset provided

demonstrates that deep learning approaches can increase classification accuracy compared to conventional approaches, increasing the accuracy

of the model tested on an independent image from 92.33 % using partial least squares-discriminant analysis to 99.4 % using 3-CNN model at pixel

level. The paper concludes with a discussion on the challenges and suggestions in the application of DL techniques for spectral image classification.

Keywords: spectral imaging, deep learning, near infrared, classification, convolutional neural network

Introduction
As an integration of spectroscopy and digital imaging
techniques, spectral imaging has emerged as a versa-
tile tool for many applications including remote
sensing,1,2 food sciences,3,4 pharmaceutical research,5,6
forensic sciences,7,8 cultural heritage,9 agriculture and
forestry.10,11 A spectral image is a three-dimensional
(3-D) data array with two spatial dimensions (of x rows

and y columns) and one spectral dimension (of l wave-
lengths). A spectral image, hereafter denoted I(x,y,l),
can be visualised either as an intensity image I(x,y)
at each wavelength l, or as a spectrum I(l) at each
pixel (x,y). The spectrum, which can be obtained by
plotting the absorbance/reflectance/transmittance as
a function of wavelength, enables quantification or

mailto:junli.xu%40ucd.ie?subject=
https://doi.org/10.1255/jsi.2020.a19
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:junli.xu@ucd.ie
https://orcid.org/0000-0002-4442-7538
https://orcid.org/0000-0002-0998-7150
https://orcid.org/0000-0003-3258-6248
https://orcid.org/0000-0002-9494-2204

2 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

classification of material(s) within an image at the indi-
vidual pixel level.12

A general, though not exclusive, scheme to perform pixel-
wise classification of a spectral imaging dataset includes: 1)
unfolding (i.e., converting 3-D spectral image into 2-D
matrix); 2) spectral pre-processing; 3) model development;
and 4) re-folding (i.e., transforming the predicted values of
every pixel into a classification map). Additional steps, such
as background removal, region of interest (ROI) selection
and image processing, can also be carried out depending on
the spectral image composition. Partial least squares-dis-
criminant analysis (PLS-DA)13 is a supervised class-model-
ling method that uses a PLS algorithm (e.g. non-iterative
partial least squares14) to predict the membership of a
sample or spectrum in a given class. PLS-DA is often used
in spectral data analysis for classification problems due to
its capability to deal with the multicollinearity problem in
near infrared (NIR) spectra which occurs because of very
high intercorrelation between measured absorbances at
consecutive wavelengths.15,16 Machine learning (ML) tech-
niques have also been proposed for spectral imaging data
classification, and are prominent in the analysis of remotely
sensed data.17 A revolution in the ML field has occurred
recently due to the establishment of deep learning (DL)
models.18 These models have enabled the development
of new and enhanced spectral imaging data classifiers.17–19
Convolutional neural networks (CNN), at the forefront
of the current state-of-the-art in deep learning,20 first
achieved successes in the field of image recognition and
have become an increasingly popular tool for remotely
sensed spectral imaging data classification.17

In this context, we illustrate the application of 1-D
CNN and 3-D-CNN models for spectral image classifi-
cation. Example dataset and MATLAB scripts are freely
available to be downloaded from https://bitbucket.org/
lily-xu/deep-learning-classifiers-for-near-infrared-spec-
tral-imaging/downloads/. All data analysis was conducted
in the MATLAB computing environment (release R2019a,
The MathWorks, Inc., Natick, MA, USA) incorporating
functions from Deep Learning Toolbox, Statistics and
Machine Learning Toolbox, Image Processing Toolbox
and additional functions written in-house, such as pre-
processing and PLS-DA and decision tree (Dtree) model-
ling. It is important to note that all MATLAB scripts
provided should be followed sequentially, in line with the
structure of the tutorial, i.e. every command line depends
upon previous lines being executed. Full understanding of
this tutorial requires basic knowledge of spectral imaging
analysis in general and MATLAB programming. It is hoped
that this paper will provide a basic understanding of the

use of DL techniques for spectral imaging classification
and encourage the adaptation of some useful strategies
to solve individual problems.

Prior to classification
The data structure of a spectral image consists of many
pixel spectra collected from the measured area. As a
result, it is important to understand the structure of a
given dataset and then select the appropriate tools to
deal with the final data processing objective. This section
will introduce the structure of the example dataset and
essential procedures (i.e. background removal and spec-
tral pre-processing) to conduct prior to classification task.
The corresponding MATLAB script is called “Section2_
Prior_to_Classification.m”.

Spectral imaging instrumentation
Spectral images of the cereal samples were collected by
a laboratory-based pushbroom spectral imaging system.
This system consists of the following main components:
an imaging spectrograph (Specim N17E, Spectral Imaging
Ltd., Oulu, Finland) and an InGaAs camera (InGAs 12-bit
SU320MS-1.7RT Sensors Unlimited, Inc.). The reflectance
image is acquired in the spectral range of 880–1720 nm
with an interval of 7 nm. Since the beginning and end
spectral regions suffer from significant noise, only spec-
tral data in the 943–1643 nm range are retained leading
to 101 spectral bands. Direct reflectance spectra are
used for subsequent data analysis.

Spectral imaging dataset
A similar cereal dataset from Gowen et al.21 is used in this
work to evaluate classification performance using DL. It
consists of NIR spectral images of three types of puffed
cereals: honey nut cornflakes, crunchy cookie cereal
and crisp flakes of rice made and purchased from Tesco
in Ireland. These samples are of great interest because
they have image texture and spectral difference among
classes, while the spatial inhomogeneity due to sample
morphology could pose some challenges in classification.
Samples are labelled as Corn, Wheat and Rice, respec-
tively, according to their main components. The represent-
ative colour images of them, which were captured by a
computer vision system as described by Xu and Sun,22 are
shown in Figure 1. Four spectral images of each sample
type were obtained. Figure 1 shows the mean image of
the spectral domain, which is computed by averaging the
reflectance spectrum of each pixel. As seen, the first three

https://bitbucket.org/lily-xu/deep-learning-classifiers-for-near-infrared-spectral-imaging/downloads/
https://bitbucket.org/lily-xu/deep-learning-classifiers-for-near-infrared-spectral-imaging/downloads/
https://bitbucket.org/lily-xu/deep-learning-classifiers-for-near-infrared-spectral-imaging/downloads/

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 3

samples of each type are selected as the training set for
model development, while the remaining one serves as the
validation set, leading to nine spectral images consisting
of 14,589 pixels for training and three spectral images of
4967 pixels for validation. The structure array data type in
MATLAB enables grouping and saving various data types
using a data container which is known as field. In this
work, the structure array data type is used to store these
12 spectral images and named “Cereal”. In addition to this,
the developed models were tested on a “mixed image”
containing three samples of each material. It should be
noted that samples from the mixed image are not used
in the training set, making them suitable to form an inde-
pendent test set. The mean image and ground truth of
this mixture are shown in Figure S1 of the supplementary
material.

Background removal
Samples were placed on a white tile for imaging.
Thresholding was applied to remove image background.
The reflectance image at 1496 nm was subtracted from
that of 1125 nm to enhance the contrast between sample
and white tile. Afterwards, a threshold of 0.2 is applied
for background removal.

Spectral pre-processing
Spectral pre-processing strategies are carried out
to avoid the influence of unwanted phenomena

originating from the measurement or sample proper-
ties (such as light scattering). In this work, two classical
spectral pre-processing methods are employed, namely
standard normal variate (SNV) and first derivative. SNV
is usually used to alleviate multiplicative interferences
by subtracting the mean value from each spectrum
and subsequently dividing by the standard deviation.23
First derivative is performed using Savitzky–Golay (SG)
filtering24 with a window size of 11 and a third order
polynomial degree.

Figure 2 shows the mean spectra of all objects (i.e.,
three objects for each category) in the training set
and the outcome of pre-treatments. As can be seen,
it is challenging to discriminate among three cereals
on the basis of the raw spectra (Figure 2A). As shown
in Figure 2B, the spectral difference between the
different types of cereals at 970 nm, which might be
attributed to second overtone of O–H stretching from
water according to Cheng and Sun,25 becomes more
prominent after the scattering is reduced by applying
SNV. The baseline is largely reduced after performing
first derivative (Figure 2C). Discrimination among
cereals is improved, as witnessed by the difference at
some wavelengths such as 1420 nm which could be
assigned to the first overtone of O–H stretching.26 The
combination of SNV and first derivative is also applied,
as shown in Figure 2D. Compared to preforming first
derivative alone, the combination of pre-treatments

Figure 1. RGB images of puffed cereals and mean images of the spectral domain.

4 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

enables the reduction of variations within the same
category, which is beneficial for the subsequent clas-
sification task.

Assessment of classification
models
Classification models were built on a training set
(comprising pixel spectra extracted from three spectral
images of each material) and applied on a validation set
(comprising pixel spectra extracted from one image of
each material), to enable comparison of model perfor-
mance. In addition, a test set, comprising a mixture of
all classes is used for model evaluation. Primarily, the
performance of the developed model is assessed by
the classification accuracy, i.e., % correct classification
rate (%CCR). The confusion matrix is used to evaluate
the classifier performance for validation and test sets
(see an example of Figure 4A). We also calculate the
percentages of samples belonging to each class that
are correctly and incorrectly classified, as shown on
the far right of each confusion matrix. The row at the
bottom of confusion matrix shows the percentages

of all the observations predicted to each class that
are correctly classified and misclassified. The sensi-
tivity [or true positive rate (TPR)], false negative rate
(FNR), precision [or positive predictive value (PPV)]
and false discovery rate (FDR), are computed as shown
below in Equations 1–4, where TP and TN refer to true
positive and true negative, respectively [i.e. obser-
vations correctly predicted as belonging (TP), or not
belonging (TN), to a specific class]. FP and FN refer
to false positive and false negative, respectively, [i.e.
observations incorrectly predicted as belonging (FP), or
not belonging (FN), to a specific class].

 TPTPR
TP FN

=
+

 (1)

 FNFNR
FN TP

=
+

 (2)

TPPPV

TP FP
=

+
 (3)

 FPFDR
FP TN

=
+

 (4)

Superior classification performance is characterised
with higher CCR, TPR, PPV and lower FNR and FDR.
Additionally, classification and misclassification maps are

Figure 2. Mean spectra of each spectral image included in the training set before and after different pre-
processing techniques. (A) Raw reflectance spectra; (B) SNV pre-processed spectra; (C) first derivative pre-pro-
cessed spectra (SG, window size = 11, polynomial degree = 3); (D) first derivative pre-processed spectra
followed by SNV.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 5

also presented to visualise the locations of correctly and
incorrectly classified pixels, respectively.

PLS-DA and Dtree modelling
Model development
For comparison, partial least squares-discriminant anal-
ysis (PLS-DA)27 and a decision tree (Dtree) classifier are
used to build classification models. PLS-DA is one of the
most popular classification methods for spectral imaging
datasets,28 therefore, it is chosen to compare with DL
classifiers. As a non-linear classifier, decision tree classifi-
cation (Dtree) is selected—this is among the most popular
machine learning algorithms. Sample pixels from each
spectral image are extracted by unfolding and concat-
enated to make a two-dimensional matrix (X). PLS-DA
and Dtree models were developed based on X and Y
(i.e., a matrix where the rows represent observations and
columns represent the true classes), the whole proce-
dure including model assessment is provided in the script
“Section4_PLS-DA_Dtree_Classification.m”.

It is important to select the appropriate number of
latent variables (LVs) for a PLS-DA model. Selection of too
few or too many LVs are both unsatisfactory, since either
approach will result in, respectively, under or over-fitting
of the data, both of which result in poor model perfor-
mance.29 In this work, venetian blinds cross-validation is
applied to determine the optimal number of LVs, which
is performed by checking the evolution of the CCR with
the number of LVs, as illustrated in Figure S2 produced
by running the function of “Nplsda_CV.m”. The accuracy
increases rapidly for the first few LVs and then remains
relatively constant, i.e., including more variables will not
enhance accuracy.

Classification performance
Classification model performance of PLS-DA in terms of
CCR (%) calculated on the validation set and test image
are shown in Table 1. Overall, the prediction results for
test set (i.e., prediction of mixture image) are inferior to
that of validation set. This is probably because the test
set mixture image has three objects for each sample type
(3108 pixels for Corn, 5742 pixels for Wheat and 4706
pixels for Rice), while the validation set only contains one
object of each type (1224 pixels for Corn, 1987 pixels for
Wheat and 1756 pixels for Rice). In this sense, compar-
ison based on the test set is more appropriate due to
its larger dataset. It is notable that pre-treatments have
improved accuracy for the test set, from CCR of 89.23 %

for raw spectra to CCR of 91.56 % for SNV combined
with first derivative pre-processed spectra.

In addition, confusion matrices for validation and
test sets are displayed in Figure S3 and Figure S4 of
the supplementary material, respectively. As illus-
trated, classification of wheat pixels has higher TPR
(i.e., sensitivity) and PPV (i.e., precision), corresponding
to Figure 2C and D where wheat presents distinctive
spectral features covering 1350–1450 nm. We can also
tell from the confusion matrix that a high number of
rice pixels are incorrectly classified as corn. In order to
produce a classification map, the mixture spectral image
is first unfolded with background pixels removed using
masking to form a two-dimensional matrix on which the
developed classifier can be applied. Finally, the resultant
matrix with predicted class assigned to each pixel needs
to be refolded to generate a classification map, as shown
in Figure 3. Many rice pixels are incorrectly predicted as
corn, which corresponds to the confusion matrix. It also
can be noticed that some misclassified pixels are distrib-
uted around the edge.

The model performance of Dtree classifier built from
first derivative transformation followed by SNV pre-pro-
cessing is shown in Figure 4. The Dtree classifier produces
slightly better predictive ability than PLS-DA, e.g., the
CCR for test set is 91.56 % for PLS-DA while the CCR
increases to 92.79 % for Dtree.

One-dimensional CNN modelling
Architecture of 1-D CNN
A special case of CNN, the 1-D CNN, can be applied to
one-dimensional data, such as spectroscopic data.30 The
architecture of the 1-D CNN comprises an input layer,

Pre-treatments LVs Validation Test

Raw 10 93.82 89.23

SNV 10 93.50 89.41

SG 7 91.99 88.06

SG+SNV 8 92.85 91.56

Note: SNV: standard normal variate; SG: first derivative using
Saviztky–Golay; LVs: latent variables.

Table 1. PLS-DA classification model performance for valida-
tion and prediction image (i.e., test set) in terms of % correct
classification rate (%CCR).

6 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

a convolution (Conv) layer, a batch normalisation (BN)
layer, a rectified linear unit (ReLU) layer, a dropout layer, a
fully connected (FC) layer, a softmax layer and an output
layer, as shown in Figure 5. Each layer is described in
more detail below.

The input of the 1-D CNN is a spectrum, i.e. a one-
dimensional vector with the size of 1 × 101 (i.e. spec-
tral bands) in this example dataset, therefore, the first
step is to extract the spectral vector from the 3-D spec-
tral image. This can be done as described in the Model

Figure 3. Classification maps (top row) and misclassification maps (bottom row) for PLS-DA models built with
raw spectra, SNV pre-treated spectra, first derivative pre-treated spectra and first derivative followed by
SNV pre-treated spectra.

Figure 4. Classification performance of Dtree. (A) Confusion matrix for
validation set; (B) classification map for test set; (C) confusion matrix for
test set; (D) misclassification map for test set.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 7

development section. The function of the convolutional
layer is to convolve the input data by applying sliding
convolutional filters and produces the convolved features
as the output31 also known as feature maps. In other
words, each type of extracted feature is generated by a
convolutional kernel. Conventionally, the kernel is moved
first from left to right and then from top to bottom over
the input with a step of 1. Strided convolution has a
larger user-defined step size for traversing the input.
For a 1-D CNN, the convolution kernel (also known as
a filter) and feature map are both one-dimensional. As
an example, for an input with the size of 1 × 19, with
a filter size of 4, number of filters of 4 and stride of 3,
the output of the convolution layer reaches the size of
1 × 6 × 4 (i.e. for each filter, the input vector of size 1 × 19
is converted into 6 features, based on convolution of
elements 1–4, 4–7, 7–10, 10–13, 13–16, 16–19) as
can be observed in Figure 5. As seen, the 1 × 4 kernel
undergoes scalar multiplication with every four numbers,
outputting one number every time. The 1-D convolution
extracts features as follows:32

() (), (1), ()i i c i c i
k k k

c

x w x b-= ´ +å (5)

At the ith layer (i equal to 2 in Figure 5), k is the index for
a specific feature map, c refers to the channel number of
the input (1)ix - . (),i c

kw is the kth convolution kernel corre-

sponding to the cth channel, ()i
kb refers to the bias of the kth

feature map.
As suggested by Ioffe and Szegedy,33 batch normalisa-

tion should be carried out before activation to get rid of
the distribution shift. The BN layer applies a transforma-
tion that maintains the mean of the convolved features
close to zero and the variance of the convolved features
close to one. It normalises its inputs (1)i

kx - (the input at kth
feature map) via using the computed mean m and vari-
ance s2 of a mini-batch (i.e., subset of the training set)
and over each input channel as follows:

 ˆ
(1)

()
2

i
i k

k
x

x
m

s e

- -
=

+
 (6)

where e is suggested in the case of a small mini-batch
variance in order to improve numerical stability. In the
situation that inputs with a mean of zero and variance of
one are not suitable for the subsequent layer, the batch
normalisation layer can be shifted and scaled as below:

 () ()i i
k ky yx b= +ˆ (7)

Here, the offset b and scale factor g are learnable
parameters that are updated during network training.
The normalised features are input into a layer with ReLU
activation function F(·), calculated as below:

 F(x) = max(0,x) (8)

Figure 5. Architecture of the 1-dimensional CNN model consisting of an input layer
(size of 1  × 19), a convolution (Conv, filter size=[1 4], number of filters = 4, stride
= 3) layer, a batch normalisation (BN) layer, a rectified linear unit (ReLU) layer, a
dropout layer, a fully connected (FC) layer, a softmax layer and an output layer.

8 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

This is followed by a dropout layer which is a regu-
larisation method to prevent a model from overfitting.
Srivastava et al.34 proposed the strategy of dropping units,
i.e., neurons over network training to reduce overfitting.
The choices of dropout neurons are random with a given
probability, defined by the user. After the dropout layer,
fully connected (FC) layer is used to merge all feature
maps (i.e., four feature maps from Figure 5). Therefore,
the number of neural nodes depends on the convolution
kernel size, the sampling kernel size and the number
of feature maps. In this case, the number of nodes is
1 × 6 × 4 = 24, as illustrated in Figure 5. In the FC layer,
every neuron in the (i)-th layer is connected to every
neuron in the subsequent layer (I + 1)-th. For a multiclas-
sification task, it is a common practice to place a softmax
layer after the last FC layer. The input of softmax comes
from K different neurons of the FC layer. Zhang et al.30
has reported how to calculate the probability (P) that the
independent variable x belongs to the j-th class as below:

 ()
1

|
T

j

T
k

x w

K x w
k

eP y j x
e

=

= =

å
 (9)

Selection of convolution parameters
First derivative (SG with a window size of 11 and third
order polynomial degree) followed by SNV were applied

to pixel spectra prior to 1-D CNN model development.
Similar to PLS-DA modelling, pixel spectra were first
extracted to form an X matrix, which together with the
class membership Y matrix are then fed into the 1-D
CNN architecture. In this work, a 2-D convolution layer
is used with some modifications to perform 1-D convo-
lution in MATLAB. The input for the 2-D convolution
layer is an image with the size of height, width and the
number of colour channels. To match the size of an input
layer for a 1-D CNN, the X matrix with size of N (number
of pixels, i.e. 14,589 pixels) × l (spectral variables, i.e.
101 wavelengths) needs to be reshaped into the size of
1 × l × 1 × N, with the height and the number of colour
channels replaced as 1. Table 2 characterises some
important training options during CNN model develop-
ment. For the network training of the 1-D CNN model,
the learning rate35 is set to 0.01, the mini-batch size is set
to 4096 and the number of max epochs of training is set
to 100. Details of the entire set of training options can be
found in Table S1.

Tuning parameters for DL requires expertise and
extensive trial and error. In order to select suitable
parameters for the 1-D CNN model developed here,
we explore the influence of filter size, number of filters
and stride on the performance of a 1-D CNN model,
with the whole procedure recorded in “Section5_1D_
CNN_model_parameters.m”. The filter size is gradually

Training option Definition Interpretation
Plot of training
 progress

The plot shows the mini-batch loss and
accuracy against iteration.

Plot the progress of the network as it trains.
This plot can be used to diagnose the occur-
rence of overfitting. For example, as the num-
ber of iterations increases, the training error
gradually decreases, while the validation error
decreases first and then increases, which implies
the emergence of overfitting.

Max epochs An epoch is the full pass of the training
algorithm over the entire training set.

The more epochs specified, the longer the
network will take to train, but the accuracy may
improve with each epoch.

Mini-batch size A mini-batch is a subset of the training
data set that is processed at the same
time in one iteration.

The larger the mini-batch, the faster the train-
ing, but the maximum size will be determined by
the GPU memory. Reduce the mini-batch size if
a memory error occurs.

Learning rate A tuning parameter that is applied in an
optimisation algorithm to decide the step
size at each iteration while approaching a
minimum of a loss function

This is a major parameter that controls the
speed of training. A lower learning rate can give
a more accurate result, but the network may
take longer to train.

Table 2. Some important training options in DL model development.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 9

increased from 5 to 70 with an interval of 5, and the
1-D CNN models are developed keeping the other
parameters constant (e.g., number of filters = 20, stride
= 5). The classification accuracy for the validation set
is plotted against filter size in Figure 6A. The model
obtains the best classification result at the convolution
kernel size of 10. As a result, the filter size is set to 10
for the subsequent tuning of parameters. The number
of filters changes from 5 to 50 with at a step of 5 under
the condition that other parameters are the same (e.g.,
filter size = 10, stride = 5). The accuracy of the valida-
tion set is plotted against the number of feature maps in
Figure 6B. The accuracy raises rapidly at the beginning
until it reaches 20, after which it tends to fluctuate.
Some features that are significant to network learning
are missing if the number of feature maps is too small,
leading to poor classification performance.30 However,
inclusion of too many feature maps increases the model
training time and risk of overfitting. As a compromise, 20
feature maps are selected. Another option is to optimise
several parameters simultaneously based on the combi-
nation of parameters. As an example, there are 14 filter
sizes ranging from 5 to 70 with the interval of 5 and 10
different numbers of filters changing from 5 to 50 at a
step of 5, leading to 140 combinations (14 × 10) and,
therefore, 140 models. The model performance in terms

of accuracy of the validation set is shown in Figure 6C.
The optimal stride, also known as sampling step size, is
determined under the condition that the filter size is 10
and 20 filters are used for feature extraction. Generally,
the size of stride is required to be smaller than the filter
size. Hence, models are built at the increasing stride in
steps of 1 from 1 to 10. As shown from Figure 6D, the
best classification performance can be achieved when
the stride is set to 4.

Classification performance
Finally, a 1-D CNN model can be developed based on the
selected parameters above, i.e., filter size = 10, number
of filters = 20, stride = 4, as can be found in the script
entitled “Section5_1D_CNN_final_model_performance”.
Generally, DL attempts to learn the correct distribution
of the data and is prone to overfit the data at some point
in time. Over the training process, the training error will
keep decreasing, yet the validation error might show a
different trend, e.g. decrease at the beginning stage and
then increase, suggesting the occurrence of overfitting.
Hence, this work applies early termination for 1-D CNN
training via setting the validation patience at 5, which
means that the training stops when it reaches 5 times
that the loss of validation set is not less than the previ-
ously smallest loss.

Figure 6. Classification performance of validation set at different filter sizes (A), number of filters (B), the
combination of filter size and filter number (C) and strides (D) for 1-D CNN model. The selected parame-
ter is indicated by the red arrow.

10 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

Figure 7 shows the accuracy and loss (i.e. the difference
between the predicted and the real value) for training and
validation sets plotted against the number of iterations.
The accuracy for training and validation both increase and
then remain flat. The evolution of a loss curve over the
training process is usually used to diagnose the stability
of a DL model. The loss of the model is generally lower
on the training set than the validation set. A minimal gap
between the two final loss values is preferred and identi-
fied as a good fit. As seen from Figure 7, the loss on the
training set decreases rapidly for the first 20 iterations,
suggesting that the network is learning fast to classify
cereal samples. The loss of the validation set does not
decrease as fast but stays roughly within the same range
as the training loss, implying that this model generalises
reasonably well to unseen data. It is also observed that
high accuracy (CCR > 95 %) for training and validation
are achieved with exceedingly reduced loss after 100
iterations.

Figure 8 shows confusion matrices for validation and
test sets. Compared to Figure S3 which shows the results
for the PLS-DA model applied to the same data (and
pre-treatments), the 1-D CNN has improved classifica-
tion performance in all aspects with higher CCR, TPR,
PPV and lower FNR and FDR. The improvement is more
significant for classification of corn and rice (Figure 8A),
which agrees with the classification map (Figure 8B)
where less pixels of rice have been wrongly identified as

corn, compared to all PLS-DA models in Figure 3. In more
detail, the 1-D CNN model incorrectly classified 412
pixels of rice as corn for the mixture image (Figure 8C),
which is much less than that of PLS-DA models with the
best one built from first derivative and SNV showing 710
pixels of rice wrongly classified as corn (Figure S4).

Three-dimensional CNN
modelling
3-D CNN architecture
Spectral images are data-rich thanks to the integration of
spatial and spectral information. However, most existing
data analysis techniques tend to focus primarily or exclu-
sively on the spectral domain,36 and the spectral data
is processed without considering the spatial features.37
To overcome this shortcoming, the 3-D CNN has been
proposed to extract high-level spectral–spatial features
from the original 3D inputs. Pixel-based classification of
a spectral image I(x,y,l) aims at predicting an individual
pixel class. Since neighbouring pixels usually have the
same labels, it is beneficial for the model to take the
“spatial coherence” into account. In this sense, the first
step of a 3-D CNN is to extract a k × k × l patch around
each pixel, where k denotes the window size of the patch.
Extraction of a patch could be performed using the

Figure 7. Training progress of 1-D CNN with accuracy (top) and loss (bottom) plotted against iteration. The number of
epochs is indicated above the X axis.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 11

original function “patch_extract_HSI”. Specifically, each
patch (i.e., the spatial/spectral context) is created by the
neighbouring pixels surrounding a pixel, i.e. the centre
point. The patch may include some pixels belonging to
the sample while the others may belong to the image
background when the pixels are distributed near the edge
of the image. Therefore, background removal is carried

out before patch extraction. Specifically, in the example
provided, the background pixels are assigned to 0.

A schematic of a 3-D CNN architecture is illustrated in
Figure 9. As an example, a patch with size of 7 × 7 × 101
is extracted from a spectral image and used as the input.
As shown, it is quite similar to those of the 1-D CNN
model, except that a 3-D convolution filter rather than

Figure 8. Classification performance of 1-D CNN. (A) Confusion matrix for
validation set; (B) classification map for test set; (C) confusion matrix for
test set; (D) misclassification map for test set.

Figure 9. Architecture of the 3-dimensional CNN model consisting of an input layer (size of 7 × 7 × 101), a con-
volution (Conv, filter size = 3 × 3 × 10, number of filters = 10, stride = 1) layer, a batch normalisation (BN) layer,
a rectified linear unit (ReLU) layer, a dropout layer, a fully connected (FC) layer, a softmax layer and an output
layer.

12 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

1-D convolution operator is utilised. As seen from
Figure 9, the filter size is set as 3 × 3 × 10 and this 3D
filter can move in all three directions (x,y,l). Since the
filter slides through a 3D space with a stride of 1, the
output is arranged in a 3D space as well with a size of
5 × 5 × 92. Similar to the 1-D CNN, a BN layer, ReLU layer,
dropout layer, FC layer and softmax layer is included in
the designed network structure.

Selection of patch window size
In this example, the same pre-treatments as used in the
previous sections (i.e., first derivative pre-processing
followed by SNV) were applied to the spectra prior to
3-D CNN model development. As illustrated schemat-
ically in Figure 9, an 8-layer 3-D CNN model was built
and applied for the classification task. Just as for the 1-D
CNN model, there are many parameters that need to be
optimised. However, it should be noted that a consider-
able amount of training time is required to develop the
3-D CNN model and memory limitations might occur in
the process (for example it takes 10 minutes for model
development on a computer using Windows 10 Pro,
processor: Intel®Core™i7-6700CPU@3.40 GHz; installed
memory: 16.0 GB; 64-bit operating system). The spatial
and spectral relationship with neighbouring pixels is the
key to successful classification, due to pixels being clas-
sified based on features extracted from the surrounding
patch. Therefore, it is worthwhile to assess the influence
of patch window size on model performance. According to
the previous section on selecting 1-D CNN parameters,
the optimal filter size of convolution layer on the spectral
domain should be 10, with 20 feature maps and moving
at a stride of 4. As for the convolution filter size applied to
the spatial dimensions, an odd-sized filter is usually used
since all the previous layer pixels would be symmetrically
arranged around the output pixel, which facilitates imple-
mentation simplicity. In general, smaller odd-sized kernel
filters would be preferred, yet 1 × 1 is eliminated from
the list of candidate optimal filter sizes as the features
extracted would be fine grained and local, with no infor-
mation from the neighbouring pixels. Therefore, in this
example the filter size is set to 3 × 3 × 10, the filter number
is set to 20, and the stride is set to 1 × 1 × 4. For the clas-
sification of each pixel, a k × k × l patch surrounding it is
first constructed, where k changes from 3 to 15 in steps
of 2, producing seven 3-D CNN models. The 3-D CNN
input layer has the size of [h w d c], where h, w, d and
c correspond to the height, width, depth and number
of channels, respectively. Prior to model development,
the size of the X matrix [originally k × k × l × N (number of

pixels)] is transformed into k × k × l × 1 × N, to match the
required size for the 3-D input layer, where 1 represents
the number of channel. Classification accuracy is plotted
against the window size of patch, as shown in Figure 10.
It is observed that the maximum accuracy is achieved at
window size of 5. The whole workflow is recorded in the
script file “Section6_3D_CNN_model_parameter.m”.

Classification performance
Following patch size optimisation, a 3-D CNN model is
subsequently developed (see the script of “Section6_3D_
CNN_final_model_performance.m”) based on the
5 × 5 × l patch with the training progress shown in Figure
11. Compared to the 1-D CNN model (Figure 7), similar
curve shapes (i.e., accuracy and loss) are noticeable,
where accuracy first soars and then remains constant
after 100 iterations, while loss declines rapidly at the
beginning and then remains flat, indicating that the model
is not under or over-fitted. A smaller gap of accuracy and
loss between training and validation is evidenced for the
3-D CNN model, suggesting a better capability of model
generalisation on unknown data.

Confusion matrices for validation and test sets were
computed and are illustrated in Figure 12A and C,
respectively. Impressive classification results are obtained
compared with the previous approaches described. We
can observe that a much higher accuracy is obtained,
namely, accuracy of 99.09 % for validation and 99.23 %
for the test set. It is a huge improvement from CCR of
91.56 % using PLS-DA, 92.53 % using Ctree and CCR
of 94.05 % using 1-D CNN for prediction of the mixture
image. Apart from this, higher TPR, PPV and lower FNR
and FDR can be seen for the 3-D CNN model compared
to PLS-DA and the 1-D CNN model, confirming the

Figure 10. Classification accuracy performance of valida-
tion set at different patch window sizes for a 3-D CNN
model.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 13

superior performance of 3-D CNN in every aspect.
As shown from the prediction maps (Figure 12B), the
number of pixels that are correctly classified is extremely
high; for instance, there are much fewer rice pixels incor-
rectly assigned to corn. The outstanding performance

can be further supported by the misclassification map
(Figure 12D) where only a few misclassified pixels can
be seen.

The 3-D CNN model is generally difficult to interpret17
due to the “black box” nature of the training procedure.

Figure 11. Training progress of 3-D CNN with accuracy (top) and loss (bottom) plotted against iteration.

Figure 12. Classification performance of 3-D CNN. (A) Confusion matrix for vali-
dation set; (B) classification map for test set; (C) confusion matrix for test set; (D)
misclassification map for test set.

14 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

Therefore, this tutorial also demonstrates some basic
strategies to visualise and understand the architecture of
a network, as well as the extracted features from different
layers. Several efforts have been made to “open” the box
and understand the design.38 For instance, analyzeNet-
work is a useful MATLAB function that facilitates visual-
isation of the neural network architecture and detection
of errors and issues in the network. As an example, see
Figure 13. The analyzeNetwork function displays an inter-
active plot of the network architecture (on the left) and
a table containing information about the network layers
(on the right) which includes the sizes of layer activations
and learnable parameters.

In addition, this tutorial shows how to feed a k × k × l
patch to the convolutional neural network and display
the output activations of different layers of the network,
in order to examine the activations and discover which
feature the network has learned. Three pixels (labelled

as P1, P2 and P3 in Figure 14) belonging to each class
are selected from the training set, and the patch with the
size of 5 × 5 × 101 surrounding each pixel is subsequently
extracted. Each patch is displayed in 3-D view (Figure
14), where the X and Y axes represent spatial dimen-
sions (5 × 5) while Z refers to the spectral dimension with
101 wavelength variables. Spectra can be extracted from
each patch and are plotted in Figure S5. It is found that
the Rice-P1 patch contains some background pixels with
all zero values over the entire spectral region as well as
some abnormal spectral profiles. Each patch (5 × 5 × 101)
is fed into the 3-D CNN network as the input. After
each patch passes through the Conv layer, the output
activations are returned as a 4-D array with the size of
3 × 3 × 23 × 20 (see Figure 13), with the fourth dimension
indexing the number of filters. Given the fact that the
original 5 × 5 image at each wavelength plane is trans-
ferred to 3 × 3 image after convolution processing, this

Figure 13. The output plot obtained after applying analyzeNetwork function on the 3-D CNN trained
network.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 15

leads to 23 × 20 = 460 images in total. For the purpose of
visualisation, these 460 images are displayed in a 23 × 20
grid in each subplot of Figure 15. Red pixels represent
strong positive activations and blue pixels refer to strong
negative activations. A red pixel at some location in a
channel (i.e. feature map) indicates that the channel is
strongly activated at that position. It can be observed
that there is a similar pattern from three patches of Corn.

In addition, Rice-P1 demonstrates unusual values prob-
ably because it comes from the edge region. Likewise,
the output activations of the dropout layer are presented
in Figure S6. The fully connected (FC) layer combines
the features from the previous layer and aims to reach
a classification decision. This tutorial extracts the output
activations of the FC layer and plots them in Figure 16.
The output argument of the FC layer of the network is

Figure 14. The 3-D view of individual patch with the size
of 5 × 5 × 101.

Figure 15. Visualisation of the output activations of the
convolution layer.

Figure 16. Visualisation of the output activations of the fully connected
layer.

16 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

equal to the number of classes of the data set, therefore,
each patch at this stage is represented by a single value
at three channels indexing each class (see Figure 13).
Good separation among classes is observed in Figure
16, implying that the representative features are strongly
activated for individual class.

PLS-DA and Dtree modelling
built from patch extraction
Focusing on the fact that the 3-D CNN model is built and
applied on a 3-D patch with the size of k × k × l, readers
might presume that the extraordinary predictive ability
originates from the use of a set of pixel spectra within
the patch instead of the conventional way of using a
solely pixel spectrum. For a fairer comparison, PLS-DA
with six LVs selected (see Figure S7) and Dtree models
are developed based on the mean spectrum of each
patch with the same size of 5 × 5 × l (see the script of
“Section7_PLS-DA_Dtree_from_patch_images.m”), with
results shown in Figures S8 and S9, respectively. The
same pre-processing procedures, i.e., first derivative (SG
with a window size of 11 and third order polynomial
degree) and then SNV, are applied on spectra before
model development. An improvement is evidenced for
validation when compared to original PLS-DA models
(see Figures S3 and S4). Nevertheless, the performance
for the test set is slightly enhanced from CCR of 91.56 %
(SNV and derivative processed on pixel spectra) to CCR of
92.33 %. When looking at the classification and misclassi-
fication maps (Figure S8B and D, respectively), misclassi-
fied pixels tend to form clusters and randomly distributed
single misclassified pixels are largely reduced, because
the approach of using mean spectra of the surrounding
pixels, also known as local averaging, enables filtering of
random noise. But, still a large number of rice pixels are
wrongly classified as corn, suggesting the insufficiency
of PLS-DA compared to 3-D CNN modelling. It is also
evident that the Dtree classifier is superior to PLS-DA
with accuracy of 96.74 % for the test set (see Figure S9).

Challenges of 3-D CNN
modelling
PLS-DA, Dtree and 1-D CNN models are developed
based on the traditional pixel-wise methods, which utilise

only the spectral information from each pixel, while
3-D CNN extracts combined spectral–spatial features.
The results from this work confirmed that joint spectral
spatial features can be more effective than considering
solely spectral features, therefore, the 3-D CNN model
should be further investigated as a powerful classifi-
cation tool in NIR spectral imaging. Despite the strong
predictive ability, 3-D CNN model development requires
a long computational time due to the complexity of deep
neural network layers. Indeed, 3-D CNN modelling brings
complexity into the classifier, requiring more parameters
that need optimisation during model development. In the
following, we summarise some of the major challenges
for 3-D CNN models:
1) The training of 3-D CNNs could be a computational

burden, since it usually requires computationally
expensive and memory-intensive methods,39 due to
the extent of parameters that must be managed for
massive spectral imaging datasets.

2) A 3-D CNN model trained from spectral imaging data
might be ineffective in generalising the distribution
of data, due to the fact that spectral imaging data is
high-dimensional and often only a small sample size for
training is available.17

3) The 3-D CNN model is more difficult to interpret17
compared to PLS-DA. However, this tutorial demon-
strates several useful strategies to understand the
learned features from different layers.

Summary and suggestions
This tutorial provides a framework for development
of 1-D CNN and 3-D CNN classifiers using NIR spec-
tral imaging data. The main reason why the 3-D CNN
model outperformed PLS-DA and the 1-D CNN is that it
considers the joint spectral and spatial features. PLS-DA,
Dtree and 1-D CNN architecture are usually used for
spectral analysis on each pixel. Whereas the 3-D CNN
model allows for the extraction and application of the
combined spatial and spectral features from the spectral
imaging dataset through the use of a 3-D patch and by
applying 3-D convolution operators. Below we provide
some suggestions regarding the general application of DL
on spectral image datasets:
1) It is important to invest time in exploring the raw data

(e.g., checking if there is any spatial information rele-
vant for classification and identifying artefacts) and
removing spectral and spatial backgrounds from the
data, prior to modelling.

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 17

2) Assess possible pre-processing strategies and choose
the most suited one(s) depending on the purpose. The
use of standardisation pre-processing (e.g., SNV) might
overcome some problems such as overfitting and the
vanishing gradient when there is limited availability
of training samples, or when very deep structures are
designed.

3) Applying DL to high dimensional spectral imaging data
is highly demanding in terms of computational work-
load. Therefore, advanced and powerful computers
and hardware platforms should be used.

4) DL in general needs a large size of training data to fit an
accurate and robust model. A lack of data often leads
to overfitting due to the limited supply of examples
that the network can learn from. If it is not possible to
acquire more spectral imaging data, data augmentation
techniques, which apply automatic transformations to
images such as horizontal image flips, cropping, trans-
lations and rotation, can be performed to expand the
amount of training data.

5) Pay attention to the problem of model overfitting.
Generally speaking, predictive models should be vali-
dated on independent datasets. In addition, many
techniques have been proposed to limit overfitting,
including adding dropout layers (as is the case in
this work), applying regularisation and reducing the
network’s capacity by removing some hidden layers.

6) Reduce the dimension of the massive spectral dataset
prior to CNN modelling. The high dimensional nature
of spectral images can result in difficulties in data
storage as well as data processing. Dimensional reduc-
tion in spectral imaging without losing significant infor-
mation about objects could ease the workloads during
DL training. For example, principal component anal-
ysis (PCA) can be applied on spectral imaging data to
reduce the data dimension. Afterwards, CNN model-
ling can be performed on the first several principal
components instead of the entire dataset.

Acknowledgements
Funding for this research was provided by the
European Research Council (ERC) under the starting
grant programme ERC-2013-StG call-Proposal No.
335508-BioWater; and Science Foundation Ireland (SFI)
under the investigators programme Proposal ID 15/
IA/2984-HyperMicroMacro.

References
1. M. Brell, K. Segl, L. Guanter and B. Bookhagen,

“3D hyperspectral point cloud generation: Fusing
airborne laser scanning and hyperspectral imaging
sensors for improved object-based information
extraction”, ISPRS J. Photogram. Remote Sens. 149,
200–214 (2019). https://doi.org/10.1016/j.isprs-
jprs.2019.01.022

2. J. Abdulridha, O. Batuman and Y. Ampatzidis, “UAV-
based remote sensing technique to detect citrus
canker disease utilizing hyperspectral imaging and
machine learning”, Remote Sens. 11(11), 1373 (2019).
https://doi.org/10.3390/rs11111373

3. I. Orrillo, J.P. Cruz-Tirado, A. Cardenas, M. Oruna,
A. Carnero, D.F. Barbin and R. Siche, “Hyperspectral
imaging as a powerful tool for identification of
papaya seeds in black pepper”, Food Control 101,
45–52 (2019). https://doi.org/10.1016/j.food-
cont.2019.02.036

4. R. Rojas-Moraleda, N.A. Valous, A. Gowen, C.
Esquerre, S. Härtel, L. Salinas and C. O’Donnell, “A
frame-based ANN for classification of hyperspectral
images: assessment of mechanical damage in mush-
rooms”, Neural Comput. Appl. 28(1), 969–981 (2017).
https://doi.org/10.1007/s00521-016-2376-7

5. G.L. Alexandrino, J.M. Amigo, M.R. Khorasani,
J. Rantanen, A.V. Friderichsen and R.J. Poppi,
“Unveiling multiple solid-state transitions in phar-
maceutical solid dosage forms using multi-series
hyperspectral imaging and different curve resolu-
tion approaches”, Chemometr. Intell. Lab. Syst. 161,
136–146 (2017). https://doi.org/10.1016/j.chemo-
lab.2016.11.004

6. L.M. Kandpal, J. Tewari, N. Gopinathan, P. Boulas
and B.-K. Cho, “In-process control assay of phar-
maceutical microtablets using hyperspectral
imaging coupled with multivariate analysis”, Anal.
Chem. 88(22), 11055–11061 (2016). https://doi.
org/10.1021/acs.analchem.6b02969

7. C. Malegori, E. Alladio, P. Oliveria, C. Manis,
M. Vincenti, P. Garofano, F. Barni and A. Berti,
“Identification of invisible biological traces in forensic
evidences by hyperspectral NIR imaging combined
with chemometrics”, Talanta 215, 120911 (2020).
https://doi.org/10.1016/j.talanta.2020.120911

8. A. Polak, T. Kelman, P. Murray, S. Marshall,
D.J.M. Stothard. N. Eastaugh and F. Eastaugh,
“Hyperspectral imaging combined with data
classification techniques as an aid for artwork

https://doi.org/10.1016/j.isprsjprs.2019.01.022
https://doi.org/10.1016/j.isprsjprs.2019.01.022
https://doi.org/10.3390/rs11111373
https://doi.org/10.1016/j.foodcont.2019.02.036
https://doi.org/10.1016/j.foodcont.2019.02.036
https://doi.org/10.1007/s00521-016-2376-7
https://doi.org/10.1016/j.chemolab.2016.11.004
https://doi.org/10.1016/j.chemolab.2016.11.004
https://doi.org/10.1021/acs.analchem.6b02969
https://doi.org/10.1021/acs.analchem.6b02969
https://doi.org/10.1016/j.talanta.2020.120911

18 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

authentication”, J. Cult. Herit. 26, 1–11 (2017).
https://doi.org/10.1016/j.culher.2017.01.013

9. F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B.G.
Brunetti and A. Sgamellotti, “Noninvasive analysis
of paintings by mid-infrared hyperspectral imaging”,
Angew. Chem. Int. Edit. 52(20), 5258–5261 (2013).
https://doi.org/10.1002/anie.201209929

10. Y. Wang, X. Hu, Z. Hou, J. Ning and Z. Zhang,
“Discrimination of nitrogen fertilizer levels of tea
plant (Camellia sinensis) based on hyperspectral imag-
ing”, J. Sci. Food Agric. 98(12), 4659–4664 (2018).
https://doi.org/10.1002/jsfa.8996

11. S. Song, D. Gibson, S. Ahmadzadeh, H.O. Chu, B.
Warden, R. Overend, F. Macfarlane, P. Murray, S.
Marshall, M. Aitkenhead, D. Bienkowski and R.
Allison, “Low cost hyper-spectral imaging system
using linear variable bandpass filter for agriculture
applications”, Appl. Optics 59(5), A167–A175 (2020).
https://doi.org/10.1364/AO.378269

12. G. Elmasry, M. Kamruzzaman, D.-W. Sun and P.
Allen, “Principles and applications of hyperspectral
imaging in quality evaluation of agro-food products:
a review”, Crit. Rev. Food Sci. Nutrit. 52(11), 999–
1023 (2012). https://doi.org/10.1080/10408398.20
10.543495

13. M. Barker and W. Rayens, “Partial least squares for
discrimination”, J. Chemometr. 17(3), 166–173 (2003).
https://doi.org/10.1002/cem.785

14. H. Wold, “Soft modelling by latent variables: the
non-linear iterative partial least squares (NIPALS)
approach”, J. Appl. Probab. 12(S1), 117–142 (1975).
https://doi.org/10.1017/S0021900200047604

15. C. Garrido-Novell, D. Pérez-Marin, J.M. Amigo, J.
Fernández-Novales, J.E. Guerrero and A. Garrido-
Varo, “Grading and color evolution of apples using
RGB and hyperspectral imaging vision cameras”,
J. Food Eng. 113(2), 281–288 (2012). https://doi.
org/10.1016/j.jfoodeng.2012.05.038

16. E. Ivorra, J. Girón, A.J. Sánchez, S. Verdú, J.M. Barat
and R. Grau, “Detection of expired vacuum-packed
smoked salmon based on PLS-DA method
using hyperspectral images”, J. Food Eng. 117(3),
342–349 (2013). https://doi.org/10.1016/j.jfood-
eng.2013.02.022

17. M. Paoletti, J.M. Haut, J. Plaza and A. Plaza, “Deep
learning classifiers for hyperspectral imaging: A
review”, ISPRS J. Photogram. Remote Sens. 158,
279–317 (2019). https://doi.org/10.1016/j.isprs-
jprs.2019.09.006

18. J. Schmidhuber, “Deep learning in neural networks:
an overview”, Neural Networks 61, 85–117 (2015).
https://doi.org/10.1016/j.neunet.2014.09.003

19. X.X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu
and F. Fraundorfer, “Deep learning in remote sens-
ing: a comprehensive review and list of resources”,
IEEE Geosci. Remote Sens. 5(4), 8–36 (2017). https://
doi.org/10.1109/MGRS.2017.2762307

20. A.J. Guo and F. Zhu, “A CNN-based spatial fea-
ture fusion algorithm for hyperspectral imagery
classification”, IEEE Trans. Geosci. Remote Sens.
57(9), 7170–7181 (2019). https://doi.org/10.1109/
TGRS.2019.2911993

21. A.A. Gowen, J.-L. Xu and A. Herrero-Langreo,
“Comparison of spectral selection methods in the
development of classification models from visible
near infrared hyperspectral imaging data”, J. Spectral
Imaging 8, a4 (2019). https://doi.org/10.1255/
jsi.2019.a4

22. J.-L. Xu and D.-W. Sun, “Computer vision detection
of salmon muscle gaping using convolutional neural
network features”, Food Anal. Meth. 11(1), 34–47
(2018). https://doi.org/10.1007/s12161-017-0957-4

23. R. Barnes, M.S. Dhanoa and S.J. Lister, “Standard
normal variate transformation and de-trending of
near-infrared diffuse reflectance spectra”, Appl.
Spectrosc. 43(5), 772–777 (1989). https://doi.
org/10.1366/0003702894202201

24. P.A. Gorry, “General least-squares smoothing and
differentiation of nonuniformly spaced data by the
convolution method”, Anal. Chem. 63(5), 534–536
(1991). https://doi.org/10.1021/ac00005a031

25. J.-H. Cheng and D.-W. Sun, “Rapid and non-invasive
detection of fish microbial spoilage by visible and
near infrared hyperspectral imaging and multivariate
analysis”, LWT-Food Sci. Technol. 62(2), 1060–1068
(2015). https://doi.org/10.1016/j.lwt.2015.01.021

26. J.-S. Cho, H.-J. Bae, B.-K. Cho and K.-D. Moon,
“Qualitative properties of roasting defect beans
and development of its classification methods by
hyperspectral imaging technology”, Food Chem. 220,
505–509 (2017). https://doi.org/10.1016/j.food-
chem.2016.09.189

27. R.G. Brereton and G.R. Lloyd, “Partial least squares
discriminant analysis for chemometrics and metab-
olomics: how scores, loadings, and weights differ
according to two common algorithms”, J. Chemometr.
32(4), e3028 (2018). https://doi.org/10.1002/
cem.3028

https://doi.org/10.1016/j.culher.2017.01.013
https://doi.org/10.1002/anie.201209929
https://doi.org/10.1002/jsfa.8996
https://doi.org/10.1364/AO.378269
https://doi.org/10.1080/10408398.2010.543495
https://doi.org/10.1080/10408398.2010.543495
https://doi.org/10.1002/cem.785
https://doi.org/10.1017/S0021900200047604
https://doi.org/10.1016/j.jfoodeng.2012.05.038
https://doi.org/10.1016/j.jfoodeng.2012.05.038
https://doi.org/10.1016/j.jfoodeng.2013.02.022
https://doi.org/10.1016/j.jfoodeng.2013.02.022
https://doi.org/10.1016/j.isprsjprs.2019.09.006
https://doi.org/10.1016/j.isprsjprs.2019.09.006
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/TGRS.2019.2911993
https://doi.org/10.1109/TGRS.2019.2911993
https://doi.org/10.1255/jsi.2019.a4
https://doi.org/10.1255/jsi.2019.a4
https://doi.org/10.1007/s12161-017-0957-4
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1021/ac00005a031
https://doi.org/10.1016/j.lwt.2015.01.021
https://doi.org/10.1016/j.foodchem.2016.09.189
https://doi.org/10.1016/j.foodchem.2016.09.189
https://doi.org/10.1002/cem.3028
https://doi.org/10.1002/cem.3028

J.-L. Xu et al., J. Spectral Imaging 9, a19 (2020) 19

28. J.M. Amigo, H. Babamoradi and S. Elcoroaristizabal,
“Hyperspectral image analysis. A tutorial”, Anal.
Chim. Acta 896, 34–51 (2015). https://doi.
org/10.1016/j.aca.2015.09.030

29. A.A. Gowen, G. Downey, C. Esquerre and C.P.
O’Donnell, “Preventing over-fitting in PLS calibration
models of near-infrared (NIR) spectroscopy data
using regression coefficients”, J. Chemometr. 25(7),
375–381 (2011). https://doi.org/10.1002/cem.1349

30. L. Zhang, X. Ding and R. Hou, “Classification mod-
eling method for near-infrared spectroscopy of
tobacco based on multimodal convolution neural
networks”, J. Anal. Methods Chem. 2020, 9652470
(2020). https://doi.org/10.1155/2020/9652470

31. J.L. Chu and A. Krzyżak, “Analysis of feature maps
selection in supervised learning using convolutional
neural networks”, in Advances in Artificial Intelligence.
Canadian AI 2014, Ed by M. Sokolova and P. van
Beek. Lecture Notes in Computer Science, Vol.
8436, Springer (2014). https://doi.org/10.1007/978-
3-319-06483-3_6

32. S. Nainan and V. Kulkarni, “Enhancement in speaker
recognition for optimized speech features using
GMM, SVM and 1-D CNN”, Int. J. Speech Technol.
(2020). https://doi.org/10.1007/s10772-020-
09771-2

33. S. Ioffe and C. Szegedy, Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. arXiv preprint 1502.03167
(2015). https://arxiv.org/abs/1502.03167

34. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever
and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting”, J. Mach.
Learn. Res. 15(1), 1929–1958 (2014).

35. D. Huang and M. Feng, “Understanding deep convo-
lutional networks for biomedical imaging: a practical
tutorial”, 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society
(EMBC), Berlin, Germany, pp. 857–863 (2019).
https://doi.org/10.1109/EMBC.2019.8857529

36. J. Burger and A. Gowen, “Data handling in hyper-
spectral image analysis”, Chemometr. Intell. Lab. Syst.
108(1), 13–22 (2011). https://doi.org/10.1016/j.
chemolab.2011.04.001

37. A. Plaza, P. Martinez, J. Plaza and R. Perez, “Spatial/
spectral analysis of hyperspectral image data”, IEEE
Workshop on Advances in Techniques for Analysis of
Remotely Sensed Data, 2003. Greenbelt, MD, USA,
pp. 298–307 (2003). https://doi.org/10.1109/
WARSD.2003.1295208

38. P.E. Rauber, S.G. Fadel, A.X. Falcão and A.C. Telea,
“Visualizing the hidden activity of artificial neural
networks”, IEEE Trans. Visualiz. Comput. Graphics
23(1), 101–110 (2017). https://doi.org/10.1109/
TVCG.2016.2598838

39. Y. Cheng, D. Wang, P. Zhou and T. Zhang, A Survey
of Model Compression and Acceleration for Deep
Neural Networks. arXiv preprint 1710.09282 (2017).
https://arxiv.org/abs/1710.09282

https://doi.org/10.1016/j.aca.2015.09.030
https://doi.org/10.1016/j.aca.2015.09.030
https://doi.org/10.1002/cem.1349
https://doi.org/10.1155/2020/9652470
https://doi.org/10.1007/978-3-319-06483-3_6
https://doi.org/10.1007/978-3-319-06483-3_6
https://doi.org/10.1007/s10772-020-09771-2
https://doi.org/10.1007/s10772-020-09771-2
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/EMBC.2019.8857529
https://doi.org/10.1016/j.chemolab.2011.04.001
https://doi.org/10.1016/j.chemolab.2011.04.001
https://doi.org/10.1109/WARSD.2003.1295208
https://doi.org/10.1109/WARSD.2003.1295208
https://doi.org/10.1109/TVCG.2016.2598838
https://doi.org/10.1109/TVCG.2016.2598838
https://arxiv.org/abs/1710.09282

