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Deep learning (DL) has recently achieved considerable successes in a wide range of applications, such as speech recognition, machine translation 

and visual recognition. This tutorial provides guidelines and useful strategies to apply DL techniques to address pixel-wise classification of spec-

tral images. A one-dimensional convolutional neural network (1-D CNN) is used to extract features from the spectral domain, which are subse-

quently used for classification. In contrast to conventional classification methods for spectral images that examine primarily the spectral context, 

a three-dimensional (3-D) CNN is applied to simultaneously extract spatial and spectral features to enhance classification accuracy. This tutorial 

paper explains, in a stepwise manner, how to develop 1-D CNN and 3-D CNN models to discriminate spectral imaging data in a food authentic-

ity context. The example image data provided consists of three varieties of puffed cereals imaged in the NIR range (943–1643 nm). The tutorial 

is presented in the MATLAB environment and scripts and dataset used are provided. Starting from spectral image pre-processing (background 

removal and spectral pre-treatment), the typical steps encountered in development of CNN models are presented. The example dataset provided 

demonstrates that deep learning approaches can increase classification accuracy compared to conventional approaches, increasing the accuracy 

of the model tested on an independent image from 92.33 % using partial least squares-discriminant analysis to 99.4 % using 3-CNN model at pixel 

level. The paper concludes with a discussion on the challenges and suggestions in the application of DL techniques for spectral image classification. 

Keywords: spectral imaging, deep learning, near infrared, classification, convolutional neural network

Introduction
As an integration of spectroscopy and digital imaging 
techniques, spectral imaging has emerged as a versa-
tile tool for many applications including remote 
sensing,1,2 food sciences,3,4 pharmaceutical research,5,6 
forensic sciences,7,8 cultural heritage,9 agriculture and 
forestry.10,11 A spectral image is a three-dimensional 
(3-D) data array with two spatial dimensions (of x rows 

and y columns) and one spectral dimension (of l wave-
lengths). A spectral image, hereafter denoted I(x,y,l), 
can be visualised either as an intensity image I(x,y) 
at each wavelength l, or as a spectrum I(l) at each 
pixel (x,y). The spectrum, which can be obtained by 
plotting the absorbance/reflectance/transmittance as 
a function of wavelength, enables quantification or 
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classification of material(s) within an image at the indi-
vidual pixel level.12

A general, though not exclusive, scheme to perform pixel-
wise classification of a spectral imaging dataset includes: 1) 
unfolding (i.e., converting 3-D spectral image into 2-D 
matrix); 2) spectral pre-processing; 3) model development; 
and 4) re-folding (i.e., transforming the predicted values of 
every pixel into a classification map). Additional steps, such 
as background removal, region of interest (ROI) selection 
and image processing, can also be carried out depending on 
the spectral image composition. Partial least squares-dis-
criminant analysis (PLS-DA)13 is a supervised class-model-
ling method that uses a PLS algorithm (e.g. non-iterative 
partial least squares14) to predict the membership of a 
sample or spectrum in a given class. PLS-DA is often used 
in spectral data analysis for classification problems due to 
its capability to deal with the multicollinearity problem in 
near infrared (NIR) spectra which occurs because of very 
high intercorrelation between measured absorbances at 
consecutive wavelengths.15,16 Machine learning (ML) tech-
niques have also been proposed for spectral imaging data 
classification, and are prominent in the analysis of remotely 
sensed data.17 A revolution in the ML field has occurred 
recently due to the establishment of deep learning (DL) 
models.18 These models have enabled the development 
of new and enhanced spectral imaging data classifiers.17–19 
Convolutional neural networks (CNN), at the forefront 
of the current state-of-the-art in deep learning,20 first 
achieved successes in the field of image recognition and 
have become an increasingly popular tool for remotely 
sensed spectral imaging data classification.17

In this context, we illustrate the application of 1-D 
CNN and 3-D-CNN models for spectral image classifi-
cation. Example dataset and MATLAB scripts are freely 
available to be downloaded from https://bitbucket.org/
lily-xu/deep-learning-classifiers-for-near-infrared-spec-
tral-imaging/downloads/. All data analysis was conducted 
in the MATLAB computing environment (release R2019a, 
The MathWorks, Inc., Natick, MA, USA) incorporating 
functions from Deep Learning Toolbox, Statistics and 
Machine Learning Toolbox, Image Processing Toolbox 
and additional functions written in-house, such as pre- 
processing and PLS-DA and decision tree (Dtree) model-
ling. It is important to note that all MATLAB scripts 
provided should be followed sequentially, in line with the 
structure of the tutorial, i.e. every command line depends 
upon previous lines being executed. Full understanding of 
this tutorial requires basic knowledge of spectral imaging 
analysis in general and MATLAB programming. It is hoped 
that this paper will provide a basic understanding of the 

use of DL techniques for spectral imaging classification 
and encourage the adaptation of some useful strategies 
to solve individual problems.

Prior to classification
The data structure of a spectral image consists of many 
pixel spectra collected from the measured area. As a 
result, it is important to understand the structure of a 
given dataset and then select the appropriate tools to 
deal with the final data processing objective. This section 
will introduce the structure of the example dataset and 
essential procedures (i.e. background removal and spec-
tral pre-processing) to conduct prior to classification task. 
The corresponding MATLAB script is called “Section2_
Prior_to_Classification.m”.

Spectral imaging instrumentation
Spectral images of the cereal samples were collected by 
a laboratory-based pushbroom spectral imaging system. 
This system consists of the following main components: 
an imaging spectrograph (Specim N17E, Spectral Imaging 
Ltd., Oulu, Finland) and an InGaAs camera (InGAs 12-bit 
SU320MS-1.7RT Sensors Unlimited, Inc.). The reflectance 
image is acquired in the spectral range of 880–1720 nm 
with an interval of 7 nm. Since the beginning and end 
spectral regions suffer from significant noise, only spec-
tral data in the 943–1643 nm range are retained leading 
to 101 spectral bands. Direct reflectance spectra are 
used for subsequent data analysis.

Spectral imaging dataset
A similar cereal dataset from Gowen et al.21 is used in this 
work to evaluate classification performance using DL. It 
consists of NIR spectral images of three types of puffed 
cereals: honey nut cornflakes, crunchy cookie cereal 
and crisp flakes of rice made and purchased from Tesco 
in Ireland. These samples are of great interest because 
they have image texture and spectral difference among 
classes, while the spatial inhomogeneity due to sample 
morphology could pose some challenges in classification. 
Samples are labelled as Corn, Wheat and Rice, respec-
tively, according to their main components. The represent-
ative colour images of them, which were captured by a 
computer vision system as described by Xu and Sun,22 are 
shown in Figure 1. Four spectral images of each sample 
type were obtained. Figure 1 shows the mean image of 
the spectral domain, which is computed by averaging the 
reflectance spectrum of each pixel. As seen, the first three 
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samples of each type are selected as the training set for 
model development, while the remaining one serves as the 
validation set, leading to nine spectral images consisting 
of 14,589 pixels for training and three spectral images of 
4967 pixels for validation. The structure array data type in 
MATLAB enables grouping and saving various data types 
using a data container which is known as field. In this 
work, the structure array data type is used to store these 
12 spectral images and named “Cereal”. In addition to this, 
the developed models were tested on a “mixed image” 
containing three samples of each material. It should be 
noted that samples from the mixed image are not used 
in the training set, making them suitable to form an inde-
pendent test set. The mean image and ground truth of 
this mixture are shown in Figure S1 of the supplementary 
material.

Background removal
Samples were placed on a white tile for imaging. 
Thresholding was applied to remove image background. 
The reflectance image at 1496 nm was subtracted from 
that of 1125 nm to enhance the contrast between sample 
and white tile. Afterwards, a threshold of 0.2 is applied 
for background removal.

Spectral pre-processing
Spectral pre-processing strategies are carried out 
to avoid the influence of unwanted phenomena 

originating from the measurement or sample proper-
ties (such as light scattering). In this work, two classical 
spectral pre-processing methods are employed, namely 
standard normal variate (SNV) and first derivative. SNV 
is usually used to alleviate multiplicative interferences 
by subtracting the mean value from each spectrum 
and subsequently dividing by the standard deviation.23 
First derivative is performed using Savitzky–Golay (SG) 
filtering24 with a window size of 11 and a third order 
polynomial degree.

Figure 2 shows the mean spectra of all objects (i.e., 
three objects for each category) in the training set 
and the outcome of pre-treatments. As can be seen, 
it is challenging to discriminate among three cereals 
on the basis of the raw spectra (Figure 2A). As shown 
in Figure 2B, the spectral difference between the 
different types of cereals at 970 nm, which might be 
attributed to second overtone of O–H stretching from 
water according to Cheng and Sun,25 becomes more 
prominent after the scattering is reduced by applying 
SNV. The baseline is largely reduced after performing 
first derivative (Figure 2C). Discrimination among 
cereals is improved, as witnessed by the difference at 
some wavelengths such as 1420 nm which could be 
assigned to the first overtone of O–H stretching.26 The 
combination of SNV and first derivative is also applied, 
as shown in Figure 2D. Compared to preforming first 
derivative alone, the combination of pre-treatments 

Figure 1. RGB images of puffed cereals and mean images of the spectral domain.
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enables the reduction of variations within the same 
category, which is beneficial for the subsequent clas-
sification task.

Assessment of classification 
models
Classification models were built on a training set 
(comprising pixel spectra extracted from three spectral 
images of each material) and applied on a validation set 
(comprising pixel spectra extracted from one image of 
each material), to enable comparison of model perfor-
mance. In addition, a test set, comprising a mixture of 
all classes is used for model evaluation. Primarily, the 
performance of the developed model is assessed by 
the classification accuracy, i.e., % correct classification 
rate (%CCR). The confusion matrix is used to evaluate 
the classifier performance for validation and test sets 
(see an example of Figure 4A). We also calculate the 
percentages of samples belonging to each class that 
are correctly and incorrectly classified, as shown on 
the far right of each confusion matrix. The row at the 
bottom of confusion matrix shows the percentages 

of all the observations predicted to each class that 
are correctly classified and misclassified. The sensi-
tivity [or true positive rate (TPR)], false negative rate 
(FNR), precision [or positive predictive value (PPV)] 
and false discovery rate (FDR), are computed as shown 
below in Equations 1–4, where TP and TN refer to true 
positive and true negative, respectively [i.e. obser-
vations correctly predicted as belonging (TP), or not 
belonging (TN), to a specific class]. FP and FN refer 
to false positive and false negative, respectively, [i.e. 
observations incorrectly predicted as belonging (FP), or 
not belonging (FN), to a specific class].

 TPTPR
TP FN

=
+

 (1)

 FNFNR
FN TP

=
+

 (2)

 
TPPPV

TP FP
=

+
 (3)

 FPFDR
FP TN

=
+

 (4)

Superior classification performance is characterised 
with higher CCR, TPR, PPV and lower FNR and FDR. 
Additionally, classification and misclassification maps are 

Figure 2. Mean spectra of each spectral image included in the training set before and after different pre- 
processing techniques. (A) Raw reflectance spectra; (B) SNV pre-processed spectra; (C) first derivative pre-pro-
cessed spectra (SG, window size = 11, polynomial degree = 3); (D) first derivative pre-processed spectra 
followed by SNV.
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also presented to visualise the locations of correctly and 
incorrectly classified pixels, respectively.

PLS-DA and Dtree modelling
Model development
For comparison, partial least squares-discriminant anal-
ysis (PLS-DA)27 and a decision tree (Dtree) classifier are 
used to build classification models. PLS-DA is one of the 
most popular classification methods for spectral imaging 
datasets,28 therefore, it is chosen to compare with DL 
classifiers. As a non-linear classifier, decision tree classifi-
cation (Dtree) is selected—this is among the most popular 
machine learning algorithms. Sample pixels from each 
spectral image are extracted by unfolding and concat-
enated to make a two-dimensional matrix (X). PLS-DA 
and Dtree models were developed based on X and Y 
(i.e., a matrix where the rows represent observations and 
columns represent the true classes), the whole proce-
dure including model assessment is provided in the script 
“Section4_PLS-DA_Dtree_Classification.m”.

It is important to select the appropriate number of 
latent variables (LVs) for a PLS-DA model. Selection of too 
few or too many LVs are both unsatisfactory, since either 
approach will result in, respectively, under or over-fitting 
of the data, both of which result in poor model perfor-
mance.29 In this work, venetian blinds cross-validation is 
applied to determine the optimal number of LVs, which 
is performed by checking the evolution of the CCR with 
the number of LVs, as illustrated in Figure S2 produced 
by running the function of “Nplsda_CV.m”. The accuracy 
increases rapidly for the first few LVs and then remains 
relatively constant, i.e., including more variables will not 
enhance accuracy.

Classification performance
Classification model performance of PLS-DA in terms of 
CCR (%) calculated on the validation set and test image 
are shown in Table 1. Overall, the prediction results for 
test set (i.e., prediction of mixture image) are inferior to 
that of validation set. This is probably because the test 
set mixture image has three objects for each sample type 
(3108 pixels for Corn, 5742 pixels for Wheat and 4706 
pixels for Rice), while the validation set only contains one 
object of each type (1224 pixels for Corn, 1987 pixels for 
Wheat and 1756 pixels for Rice). In this sense, compar-
ison based on the test set is more appropriate due to 
its larger dataset. It is notable that pre-treatments have 
improved accuracy for the test set, from CCR of 89.23 % 

for raw spectra to CCR of 91.56 % for SNV combined 
with first derivative pre-processed spectra.

In addition, confusion matrices for validation and 
test sets are displayed in Figure S3 and Figure S4 of 
the supplementary material, respectively. As illus-
trated, classification of wheat pixels has higher TPR 
(i.e., sensitivity) and PPV (i.e., precision), corresponding 
to Figure 2C and D where wheat presents distinctive 
spectral features covering 1350–1450 nm. We can also 
tell from the confusion matrix that a high number of 
rice pixels are incorrectly classified as corn. In order to 
produce a classification map, the mixture spectral image 
is first unfolded with background pixels removed using 
masking to form a two-dimensional matrix on which the 
developed classifier can be applied. Finally, the resultant 
matrix with predicted class assigned to each pixel needs 
to be refolded to generate a classification map, as shown 
in Figure 3. Many rice pixels are incorrectly predicted as 
corn, which corresponds to the confusion matrix. It also 
can be noticed that some misclassified pixels are distrib-
uted around the edge.

The model performance of Dtree classifier built from 
first derivative transformation followed by SNV pre-pro-
cessing is shown in Figure 4. The Dtree classifier produces 
slightly better predictive ability than PLS-DA, e.g., the 
CCR for test set is 91.56 % for PLS-DA while the CCR 
increases to 92.79 % for Dtree.

One-dimensional CNN modelling
Architecture of 1-D CNN
A special case of CNN, the 1-D CNN, can be applied to 
one-dimensional data, such as spectroscopic data.30 The 
architecture of the 1-D CNN comprises an input layer, 

Pre-treatments LVs Validation Test

Raw 10 93.82 89.23

SNV 10 93.50 89.41

SG 7 91.99 88.06

SG+SNV 8 92.85 91.56

Note: SNV: standard normal variate; SG: first derivative using 
Saviztky–Golay; LVs: latent variables.

Table 1. PLS-DA classification model performance for valida-
tion and prediction image (i.e., test set) in terms of % correct 
classification rate (%CCR).
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a convolution (Conv) layer, a batch normalisation (BN) 
layer, a rectified linear unit (ReLU) layer, a dropout layer, a 
fully connected (FC) layer, a softmax layer and an output 
layer, as shown in Figure 5. Each layer is described in 
more detail below.

The input of the 1-D CNN is a spectrum, i.e. a one- 
dimensional vector with the size of 1 × 101 (i.e. spec-
tral bands) in this example dataset, therefore, the first 
step is to extract the spectral vector from the 3-D spec-
tral image. This can be done as described in the Model 

Figure 3. Classification maps (top row) and misclassification maps (bottom row) for PLS-DA models built with 
raw spectra, SNV pre-treated spectra, first derivative pre-treated spectra and first derivative followed by 
SNV pre-treated spectra.

Figure 4. Classification performance of Dtree. (A) Confusion matrix for 
validation set; (B) classification map for test set; (C) confusion matrix for 
test set; (D) misclassification map for test set.
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development section. The function of the convolutional 
layer is to convolve the input data by applying sliding 
convolutional filters and produces the convolved features 
as the output31 also known as feature maps. In other 
words, each type of extracted feature is generated by a 
convolutional kernel. Conventionally, the kernel is moved 
first from left to right and then from top to bottom over 
the input with a step of 1. Strided convolution has a 
larger user-defined step size for traversing the input. 
For a 1-D CNN, the convolution kernel (also known as 
a filter) and feature map are both one-dimensional. As 
an example, for an input with the size of 1 × 19, with 
a filter size of 4, number of filters of 4 and stride of 3, 
the output of the convolution layer reaches the size of 
1 × 6 × 4 (i.e. for each filter, the input vector of size 1 × 19 
is converted into 6 features, based on convolution of 
elements 1–4, 4–7, 7–10, 10–13, 13–16, 16–19) as 
can be observed in Figure 5. As seen, the 1 × 4 kernel 
undergoes scalar multiplication with every four numbers, 
outputting one number every time. The 1-D convolution 
extracts features as follows:32

 
( ) ( ), ( 1), ( )i i c i c i
k k k

c

x w x b-= ´ +å  (5)

At the ith layer (i equal to 2 in Figure 5), k is the index for 
a specific feature map, c refers to the channel number of 
the input ( 1)ix - . ( ),i c

kw  is the kth convolution kernel corre-

sponding to the cth channel, ( )i
kb  refers to the bias of the kth 

feature map.
As suggested by Ioffe and Szegedy,33 batch normalisa-

tion should be carried out before activation to get rid of 
the distribution shift. The BN layer applies a transforma-
tion that maintains the mean of the convolved features 
close to zero and the variance of the convolved features 
close to one. It normalises its inputs ( 1)i

kx -  (the input at kth 
feature map) via using the computed mean m and vari-
ance s2 of a mini-batch (i.e., subset of the training set) 
and over each input channel as follows:

 ˆ
( 1)

( )
2

i
i k

k
x

x
m

s e

- -
=

+
 (6)

where e is suggested in the case of a small mini-batch 
variance in order to improve numerical stability. In the 
situation that inputs with a mean of zero and variance of 
one are not suitable for the subsequent layer, the batch 
normalisation layer can be shifted and scaled as below:

 ( ) ( )i i
k ky yx b= +ˆ  (7)

Here, the offset b and scale factor g are learnable 
parameters that are updated during network training. 
The normalised features are input into a layer with ReLU 
activation function F(·), calculated as below: 

 F(x) = max(0,x) (8)

Figure 5. Architecture of the 1-dimensional CNN model consisting of an input layer 
(size of 1  × 19), a convolution (Conv, filter size=[1 4], number of filters = 4, stride 
= 3) layer, a batch normalisation (BN) layer, a rectified linear unit (ReLU) layer, a 
dropout layer, a fully connected (FC) layer, a softmax layer and an output layer.
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This is followed by a dropout layer which is a regu-
larisation method to prevent a model from overfitting. 
Srivastava et al.34 proposed the strategy of dropping units, 
i.e., neurons over network training to reduce overfitting. 
The choices of dropout neurons are random with a given 
probability, defined by the user. After the dropout layer, 
fully connected (FC) layer is used to merge all feature 
maps (i.e., four feature maps from Figure 5). Therefore, 
the number of neural nodes depends on the convolution 
kernel size, the sampling kernel size and the number 
of feature maps. In this case, the number of nodes is 
1 × 6 × 4 = 24, as illustrated in Figure 5. In the FC layer, 
every neuron in the (i)-th layer is connected to every 
neuron in the subsequent layer (I + 1)-th. For a multiclas-
sification task, it is a common practice to place a softmax 
layer after the last FC layer. The input of softmax comes 
from K different neurons of the FC layer. Zhang et al.30 
has reported how to calculate the probability (P) that the 
independent variable x belongs to the j-th class as below:

 ( )
1

|
T

j

T
k

x w

K x w
k

eP y j x
e

=

= =

å
 (9)

Selection of convolution parameters
First derivative (SG with a window size of 11 and third 
order polynomial degree) followed by SNV were applied 

to pixel spectra prior to 1-D CNN model development. 
Similar to PLS-DA modelling, pixel spectra were first 
extracted to form an X matrix, which together with the 
class membership Y matrix are then fed into the 1-D 
CNN architecture. In this work, a 2-D convolution layer 
is used with some modifications to perform 1-D convo-
lution in MATLAB. The input for the 2-D convolution 
layer is an image with the size of height, width and the 
number of colour channels. To match the size of an input 
layer for a 1-D CNN, the X matrix with size of N (number 
of pixels, i.e. 14,589 pixels) × l (spectral variables, i.e. 
101 wavelengths) needs to be reshaped into the size of 
1 × l × 1 × N, with the height and the number of colour 
channels replaced as 1. Table 2 characterises some 
important training options during CNN model develop-
ment. For the network training of the 1-D CNN model, 
the learning rate35 is set to 0.01, the mini-batch size is set 
to 4096 and the number of max epochs of training is set 
to 100. Details of the entire set of training options can be 
found in Table S1.

Tuning parameters for DL requires expertise and 
extensive trial and error. In order to select suitable 
parameters for the 1-D CNN model developed here, 
we explore the influence of filter size, number of filters 
and stride on the performance of a 1-D CNN model, 
with the whole procedure recorded in “Section5_1D_
CNN_model_parameters.m”. The filter size is gradually 

Training option Definition Interpretation
Plot of training 
 progress

The plot shows the mini-batch loss and 
accuracy against iteration.

Plot the progress of the network as it trains. 
This plot can be used to diagnose the occur-
rence of overfitting. For example, as the num-
ber of iterations increases, the training error 
gradually decreases, while the validation error 
decreases first and then increases, which implies 
the emergence of overfitting.

Max epochs An epoch is the full pass of the training 
algorithm over the entire training set.

The more epochs specified, the longer the 
network will take to train, but the accuracy may 
improve with each epoch.

Mini-batch size A mini-batch is a subset of the training 
data set that is processed at the same 
time in one iteration.

The larger the mini-batch, the faster the train-
ing, but the maximum size will be determined by 
the GPU memory. Reduce the mini-batch size if 
a memory error occurs.

Learning rate A tuning parameter that is applied in an 
optimisation algorithm to decide the step 
size at each iteration while approaching a 
minimum of a loss function

This is a major parameter that controls the 
speed of training. A lower learning rate can give 
a more accurate result, but the network may 
take longer to train.

Table 2. Some important training options in DL model development.
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increased from 5 to 70 with an interval of 5, and the 
1-D CNN models are developed keeping the other 
parameters constant (e.g., number of filters = 20, stride 
= 5). The classification accuracy for the validation set 
is plotted against filter size in Figure 6A. The model 
obtains the best classification result at the convolution 
kernel size of 10. As a result, the filter size is set to 10 
for the subsequent tuning of parameters. The number 
of filters changes from 5 to 50 with at a step of 5 under 
the condition that other parameters are the same (e.g., 
filter size = 10, stride = 5). The accuracy of the valida-
tion set is plotted against the number of feature maps in 
Figure 6B. The accuracy raises rapidly at the beginning 
until it reaches 20, after which it tends to fluctuate. 
Some features that are significant to network learning 
are missing if the number of feature maps is too small, 
leading to poor classification performance.30 However, 
inclusion of too many feature maps increases the model 
training time and risk of overfitting. As a compromise, 20 
feature maps are selected. Another option is to optimise 
several parameters simultaneously based on the combi-
nation of parameters. As an example, there are 14 filter 
sizes ranging from 5 to 70 with the interval of 5 and 10 
different numbers of filters changing from 5 to 50 at a 
step of 5, leading to 140 combinations (14 × 10) and, 
therefore, 140 models. The model performance in terms 

of accuracy of the validation set is shown in Figure 6C. 
The optimal stride, also known as sampling step size, is 
determined under the condition that the filter size is 10 
and 20 filters are used for feature extraction. Generally, 
the size of stride is required to be smaller than the filter 
size. Hence, models are built at the increasing stride in 
steps of 1 from 1 to 10. As shown from Figure 6D, the 
best classification performance can be achieved when 
the stride is set to 4.

Classification performance
Finally, a 1-D CNN model can be developed based on the 
selected parameters above, i.e., filter size = 10, number 
of filters = 20, stride = 4, as can be found in the script 
entitled “Section5_1D_CNN_final_model_performance”. 
Generally, DL attempts to learn the correct distribution 
of the data and is prone to overfit the data at some point 
in time. Over the training process, the training error will 
keep decreasing, yet the validation error might show a 
different trend, e.g. decrease at the beginning stage and 
then increase, suggesting the occurrence of overfitting. 
Hence, this work applies early termination for 1-D CNN 
training via setting the validation patience at 5, which 
means that the training stops when it reaches 5 times 
that the loss of validation set is not less than the previ-
ously smallest loss.

Figure 6. Classification performance of validation set at different filter sizes (A), number of filters (B), the 
combination of filter size and filter number (C) and strides (D) for 1-D CNN model. The selected parame-
ter is indicated by the red arrow.
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Figure 7 shows the accuracy and loss (i.e. the difference 
between the predicted and the real value) for training and 
validation sets plotted against the number of iterations. 
The accuracy for training and validation both increase and 
then remain flat. The evolution of a loss curve over the 
training process is usually used to diagnose the stability 
of a DL model. The loss of the model is generally lower 
on the training set than the validation set. A minimal gap 
between the two final loss values is preferred and identi-
fied as a good fit. As seen from Figure 7, the loss on the 
training set decreases rapidly for the first 20 iterations, 
suggesting that the network is learning fast to classify 
cereal samples. The loss of the validation set does not 
decrease as fast but stays roughly within the same range 
as the training loss, implying that this model generalises 
reasonably well to unseen data. It is also observed that 
high accuracy (CCR > 95 %) for training and validation 
are achieved with exceedingly reduced loss after 100 
iterations.

Figure 8 shows confusion matrices for validation and 
test sets. Compared to Figure S3 which shows the results 
for the PLS-DA model applied to the same data (and 
pre-treatments), the 1-D CNN has improved classifica-
tion performance in all aspects with higher CCR, TPR, 
PPV and lower FNR and FDR. The improvement is more 
significant for classification of corn and rice (Figure 8A), 
which agrees with the classification map (Figure 8B) 
where less pixels of rice have been wrongly identified as 

corn, compared to all PLS-DA models in Figure 3. In more 
detail, the 1-D CNN model incorrectly classified 412 
pixels of rice as corn for the mixture image (Figure 8C), 
which is much less than that of PLS-DA models with the 
best one built from first derivative and SNV showing 710 
pixels of rice wrongly classified as corn (Figure S4).

Three-dimensional CNN 
modelling
3-D CNN architecture
Spectral images are data-rich thanks to the integration of 
spatial and spectral information. However, most existing 
data analysis techniques tend to focus primarily or exclu-
sively on the spectral domain,36 and the spectral data 
is processed without considering the spatial features.37 
To overcome this shortcoming, the 3-D CNN has been 
proposed to extract high-level spectral–spatial features 
from the original 3D inputs. Pixel-based classification of 
a spectral image I(x,y,l) aims at predicting an individual 
pixel class. Since neighbouring pixels usually have the 
same labels, it is beneficial for the model to take the 
“spatial coherence” into account. In this sense, the first 
step of a 3-D CNN is to extract a k × k × l patch around 
each pixel, where k denotes the window size of the patch. 
Extraction of a patch could be performed using the 

Figure 7. Training progress of 1-D CNN with accuracy (top) and loss (bottom) plotted against iteration. The number of 
epochs is indicated above the X axis.
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original function “patch_extract_HSI”. Specifically, each 
patch (i.e., the spatial/spectral context) is created by the 
neighbouring pixels surrounding a pixel, i.e. the centre 
point. The patch may include some pixels belonging to 
the sample while the others may belong to the image 
background when the pixels are distributed near the edge 
of the image. Therefore, background removal is carried 

out before patch extraction. Specifically, in the example 
provided, the background pixels are assigned to 0.

A schematic of a 3-D CNN architecture is illustrated in 
Figure 9. As an example, a patch with size of 7 × 7 × 101 
is extracted from a spectral image and used as the input. 
As shown, it is quite similar to those of the 1-D CNN 
model, except that a 3-D convolution filter rather than 

Figure 8. Classification performance of 1-D CNN. (A) Confusion matrix for 
validation set; (B) classification map for test set; (C) confusion matrix for 
test set; (D) misclassification map for test set.

Figure 9. Architecture of the 3-dimensional CNN model consisting of an input layer (size of 7 × 7 × 101), a con-
volution (Conv, filter size = 3 × 3 × 10, number of filters = 10, stride = 1) layer, a batch normalisation (BN) layer, 
a rectified linear unit (ReLU) layer, a dropout layer, a fully connected (FC) layer, a softmax layer and an output 
layer.



12 Deep Learning Classifiers for Near Infrared Spectral Imaging: A Tutorial

1-D convolution operator is utilised. As seen from 
Figure 9, the filter size is set as 3 × 3 × 10 and this 3D 
filter can move in all three directions (x,y,l). Since the 
filter slides through a 3D space with a stride of 1, the 
output is arranged in a 3D space as well with a size of 
5 × 5 × 92. Similar to the 1-D CNN, a BN layer, ReLU layer, 
dropout layer, FC layer and softmax layer is included in 
the designed network structure.

Selection of patch window size
In this example, the same pre-treatments as used in the 
previous sections (i.e., first derivative pre-processing 
followed by SNV) were applied to the spectra prior to 
3-D CNN model development. As illustrated schemat-
ically in Figure 9, an 8-layer 3-D CNN model was built 
and applied for the classification task. Just as for the 1-D 
CNN model, there are many parameters that need to be 
optimised. However, it should be noted that a consider-
able amount of training time is required to develop the 
3-D CNN model and memory limitations might occur in 
the process (for example it takes 10 minutes for model 
development on a computer using Windows 10 Pro, 
processor: Intel®Core™i7-6700CPU@3.40 GHz; installed 
memory: 16.0 GB; 64-bit operating system). The spatial 
and spectral relationship with neighbouring pixels is the 
key to successful classification, due to pixels being clas-
sified based on features extracted from the surrounding 
patch. Therefore, it is worthwhile to assess the influence 
of patch window size on model performance. According to 
the previous section on selecting 1-D CNN parameters, 
the optimal filter size of convolution layer on the spectral 
domain should be 10, with 20 feature maps and moving 
at a stride of 4. As for the convolution filter size applied to 
the spatial dimensions, an odd-sized filter is usually used 
since all the previous layer pixels would be symmetrically 
arranged around the output pixel, which facilitates imple-
mentation simplicity. In general, smaller odd-sized kernel 
filters would be preferred, yet 1 × 1 is eliminated from 
the list of candidate optimal filter sizes as the features 
extracted would be fine grained and local, with no infor-
mation from the neighbouring pixels. Therefore, in this 
example the filter size is set to 3 × 3 × 10, the filter number 
is set to 20, and the stride is set to 1 × 1 × 4. For the clas-
sification of each pixel, a k × k × l patch surrounding it is 
first constructed, where k changes from 3 to 15 in steps 
of 2, producing seven 3-D CNN models. The 3-D CNN 
input layer has the size of [h w d c], where h, w, d and 
c correspond to the height, width, depth and number 
of channels, respectively. Prior to model development, 
the size of the X matrix [originally k × k × l × N (number of 

pixels)] is transformed into k × k × l × 1 × N, to match the 
required size for the 3-D input layer, where 1 represents 
the number of channel. Classification accuracy is plotted 
against the window size of patch, as shown in Figure 10. 
It is observed that the maximum accuracy is achieved at 
window size of 5. The whole workflow is recorded in the 
script file “Section6_3D_CNN_model_parameter.m”.

Classification performance
Following patch size optimisation, a 3-D CNN model is 
subsequently developed (see the script of “Section6_3D_
CNN_final_model_performance.m”) based on the 
5 × 5 × l patch with the training progress shown in Figure 
11. Compared to the 1-D CNN model (Figure 7), similar 
curve shapes (i.e., accuracy and loss) are noticeable, 
where accuracy first soars and then remains constant 
after 100 iterations, while loss declines rapidly at the 
beginning and then remains flat, indicating that the model 
is not under or over-fitted. A smaller gap of accuracy and 
loss between training and validation is evidenced for the 
3-D CNN model, suggesting a better capability of model 
generalisation on unknown data.

Confusion matrices for validation and test sets were 
computed and are illustrated in Figure 12A and C, 
respectively. Impressive classification results are obtained 
compared with the previous approaches described. We 
can observe that a much higher accuracy is obtained, 
namely, accuracy of 99.09 % for validation and 99.23 % 
for the test set. It is a huge improvement from CCR of 
91.56 % using PLS-DA, 92.53 % using Ctree and CCR 
of 94.05 % using 1-D CNN for prediction of the mixture 
image. Apart from this, higher TPR, PPV and lower FNR 
and FDR can be seen for the 3-D CNN model compared 
to PLS-DA and the 1-D CNN model, confirming the 

Figure 10. Classification accuracy performance of valida-
tion set at different patch window sizes for a 3-D CNN 
model.
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superior performance of 3-D CNN in every aspect. 
As shown from the prediction maps (Figure 12B), the 
number of pixels that are correctly classified is extremely 
high; for instance, there are much fewer rice pixels incor-
rectly assigned to corn. The outstanding performance 

can be further supported by the misclassification map 
(Figure 12D) where only a few misclassified pixels can 
be seen.

The 3-D CNN model is generally difficult to interpret17 
due to the “black box” nature of the training procedure. 

Figure 11. Training progress of 3-D CNN with accuracy (top) and loss (bottom) plotted against iteration.

Figure 12. Classification performance of 3-D CNN. (A) Confusion matrix for vali-
dation set; (B) classification map for test set; (C) confusion matrix for test set; (D) 
misclassification map for test set.
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Therefore, this tutorial also demonstrates some basic 
strategies to visualise and understand the architecture of 
a network, as well as the extracted features from different 
layers. Several efforts have been made to “open” the box 
and understand the design.38 For instance, analyzeNet-
work is a useful MATLAB function that facilitates visual-
isation of the neural network architecture and detection 
of errors and issues in the network. As an example, see 
Figure 13. The analyzeNetwork function displays an inter-
active plot of the network architecture (on the left) and 
a table containing information about the network layers 
(on the right) which includes the sizes of layer activations 
and learnable parameters.

In addition, this tutorial shows how to feed a k × k × l 
patch to the convolutional neural network and display 
the output activations of different layers of the network, 
in order to examine the activations and discover which 
feature the network has learned. Three pixels (labelled 

as P1, P2 and P3 in Figure 14) belonging to each class 
are selected from the training set, and the patch with the 
size of 5 × 5 × 101 surrounding each pixel is subsequently 
extracted. Each patch is displayed in 3-D view (Figure 
14), where the X and Y axes represent spatial dimen-
sions (5 × 5) while Z refers to the spectral dimension with 
101 wavelength variables. Spectra can be extracted from 
each patch and are plotted in Figure S5. It is found that 
the Rice-P1 patch contains some background pixels with 
all zero values over the entire spectral region as well as 
some abnormal spectral profiles. Each patch (5 × 5 × 101) 
is fed into the 3-D CNN network as the input. After 
each patch passes through the Conv layer, the output 
activations are returned as a 4-D array with the size of 
3 × 3 × 23 × 20 (see Figure 13), with the fourth dimension 
indexing the number of filters. Given the fact that the 
original 5 × 5 image at each wavelength plane is trans-
ferred to 3 × 3 image after convolution processing, this 

Figure 13. The output plot obtained after applying analyzeNetwork function on the 3-D CNN trained 
network.
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leads to 23 × 20 = 460 images in total. For the purpose of 
visualisation, these 460 images are displayed in a 23 × 20 
grid in each subplot of Figure 15. Red pixels represent 
strong positive activations and blue pixels refer to strong 
negative activations. A red pixel at some location in a 
channel (i.e. feature map) indicates that the channel is 
strongly activated at that position. It can be observed 
that there is a similar pattern from three patches of Corn. 

In addition, Rice-P1 demonstrates unusual values prob-
ably because it comes from the edge region. Likewise, 
the output activations of the dropout layer are presented 
in Figure S6. The fully connected (FC) layer combines 
the features from the previous layer and aims to reach 
a classification decision. This tutorial extracts the output 
activations of the FC layer and plots them in Figure 16. 
The output argument of the FC layer of the network is 

Figure 14. The 3-D view of individual patch with the size 
of 5 × 5 × 101.

Figure 15. Visualisation of the output activations of the 
convolution layer.

Figure 16. Visualisation of the output activations of the fully connected 
layer.
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equal to the number of classes of the data set, therefore, 
each patch at this stage is represented by a single value 
at three channels indexing each class (see Figure 13). 
Good separation among classes is observed in Figure 
16, implying that the representative features are strongly 
activated for individual class. 

PLS-DA and Dtree modelling 
built from patch extraction
Focusing on the fact that the 3-D CNN model is built and 
applied on a 3-D patch with the size of k × k × l, readers 
might presume that the extraordinary predictive ability 
originates from the use of a set of pixel spectra within 
the patch instead of the conventional way of using a 
solely pixel spectrum. For a fairer comparison, PLS-DA 
with six LVs selected (see Figure S7) and Dtree models 
are developed based on the mean spectrum of each 
patch with the same size of 5 × 5 × l (see the script of 
“Section7_PLS-DA_Dtree_from_patch_images.m”), with 
results shown in Figures S8 and S9, respectively. The 
same pre-processing procedures, i.e., first derivative (SG 
with a window size of 11 and third order polynomial 
degree) and then SNV, are applied on spectra before 
model development. An improvement is evidenced for 
validation when compared to original PLS-DA models 
(see Figures S3 and S4). Nevertheless, the performance 
for the test set is slightly enhanced from CCR of 91.56 % 
(SNV and derivative processed on pixel spectra) to CCR of 
92.33 %. When looking at the classification and misclassi-
fication maps (Figure S8B and D, respectively), misclassi-
fied pixels tend to form clusters and randomly distributed 
single misclassified pixels are largely reduced, because 
the approach of using mean spectra of the surrounding 
pixels, also known as local averaging, enables filtering of 
random noise. But, still a large number of rice pixels are 
wrongly classified as corn, suggesting the insufficiency 
of PLS-DA compared to 3-D CNN modelling. It is also 
evident that the Dtree classifier is superior to PLS-DA 
with accuracy of 96.74 % for the test set (see Figure S9).

Challenges of 3-D CNN 
modelling 
PLS-DA, Dtree and 1-D CNN models are developed 
based on the traditional pixel-wise methods, which utilise 

only the spectral information from each pixel, while 
3-D CNN extracts combined spectral–spatial features. 
The results from this work confirmed that joint spectral 
spatial features can be more effective than considering 
solely spectral features, therefore, the 3-D CNN model 
should be further investigated as a powerful classifi-
cation tool in NIR spectral imaging. Despite the strong 
predictive ability, 3-D CNN model development requires 
a long computational time due to the complexity of deep 
neural network layers. Indeed, 3-D CNN modelling brings 
complexity into the classifier, requiring more parameters 
that need optimisation during model development. In the 
following, we summarise some of the major challenges 
for 3-D CNN models:
1) The training of 3-D CNNs could be a computational 

burden, since it usually requires computationally 
expensive and memory-intensive methods,39 due to 
the extent of parameters that must be managed for 
massive spectral imaging datasets.

2) A 3-D CNN model trained from spectral imaging data 
might be ineffective in generalising the distribution 
of data, due to the fact that spectral imaging data is 
high-dimensional and often only a small sample size for 
training is available.17

3) The 3-D CNN model is more difficult to interpret17 
compared to PLS-DA. However, this tutorial demon-
strates several useful strategies to understand the 
learned features from different layers.

Summary and suggestions
This tutorial provides a framework for development 
of 1-D CNN and 3-D CNN classifiers using NIR spec-
tral imaging data. The main reason why the 3-D CNN 
model outperformed PLS-DA and the 1-D CNN is that it 
considers the joint spectral and spatial features. PLS-DA, 
Dtree and 1-D CNN architecture are usually used for 
spectral analysis on each pixel. Whereas the 3-D CNN 
model allows for the extraction and application of the 
combined spatial and spectral features from the spectral 
imaging dataset through the use of a 3-D patch and by 
applying 3-D convolution operators. Below we provide 
some suggestions regarding the general application of DL 
on spectral image datasets:
1) It is important to invest time in exploring the raw data 

(e.g., checking if there is any spatial information rele-
vant for classification and identifying artefacts) and 
removing spectral and spatial backgrounds from the 
data, prior to modelling.
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2) Assess possible pre-processing strategies and choose 
the most suited one(s) depending on the purpose. The 
use of standardisation pre-processing (e.g., SNV) might 
overcome some problems such as overfitting and the 
vanishing gradient when there is limited availability 
of training samples, or when very deep structures are 
designed.

3) Applying DL to high dimensional spectral imaging data 
is highly demanding in terms of computational work-
load. Therefore, advanced and powerful computers 
and hardware platforms should be used.

4) DL in general needs a large size of training data to fit an 
accurate and robust model. A lack of data often leads 
to overfitting due to the limited supply of examples 
that the network can learn from. If it is not possible to 
acquire more spectral imaging data, data augmentation 
techniques, which apply automatic transformations to 
images such as horizontal image flips, cropping, trans-
lations and rotation, can be performed to expand the 
amount of training data.

5) Pay attention to the problem of model overfitting. 
Generally speaking, predictive models should be vali-
dated on independent datasets. In addition, many 
techniques have been proposed to limit overfitting, 
including adding dropout layers (as is the case in 
this work), applying regularisation and reducing the 
network’s capacity by removing some hidden layers.

6) Reduce the dimension of the massive spectral dataset 
prior to CNN modelling. The high dimensional nature 
of spectral images can result in difficulties in data 
storage as well as data processing. Dimensional reduc-
tion in spectral imaging without losing significant infor-
mation about objects could ease the workloads during 
DL training. For example, principal component anal-
ysis (PCA) can be applied on spectral imaging data to 
reduce the data dimension. Afterwards, CNN model-
ling can be performed on the first several principal 
components instead of the entire dataset.
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