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In remote sensing, the compositional information of part of the earth’s surface is statistically evaluated by comparing known field or library spectra 

with the unknown image spectra, known as spectral matching or spectral similarity analysis. In this research, hybrid spectral similarity algorithms 

developed based on chi-square distance (CHI or χ2) are used to retrieve useful information from the Hyperion hyperspectral oil spill image covering 

the area near Liaodong Bay of the Bohai Sea, China. In order to evaluate the discriminability of spectral similarity algorithms, a pixel-level match-

ing is carried out between the reference vectors, viz. Oil Slick (O), Sheen (H), Sea Water (S) and Ship Track (T), collected visually from known areas 

in the image. The hybrid spectral similarity algorithms are statistically assessed for their performance using the spectral discriminatory measures 

(i) relative spectral discriminatory power (RSDPW), (ii) relative spectral discriminatory probability (RSDPB) and (iii) relative spectral discrimina-

tory entropy (RSDE). Additionally, the selected hybrid algorithms are used on the Hyperion image subset to perform a pixel-based classification. 

Classification results revealed that the CHI-based hybrid algorithms performed better than all other hybrid spectral similarity methods. Therefore, 

the CHI-based hybrid algorithms demonstrated their superior spectral discrimination capacity to classify marine spectral classes for oil spill map-

ping from the hyperspectral dataset.

Keywords: chi-square distance, hybrid spectral similarity measures, hyperspectral image, oil spill, overall accuracy, spectral discriminatory 
measures

Introduction
Oil spills occur in the seas mainly due to transporta-
tion accidents, the release of oil by shipping operators 
and various production platforms.1 The oil floats on 
the sea surface, causing severe damage to the marine 
ecosystem.2 Real-time mapping and evaluation of oil 
spillage is critical in making quick decisions and to 

prevent severe after-effects.3 As the marine environ-
ment is a very complex organic system, spectral changes 
occurring on the leaked oils can be measured only by 
a spectrally broad sensor.4 Hyperspectral sensors are 
a type of imaging spectroscopy sensor that sample the 
reflective portion of the electromagnetic (EM) spectrum. 
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This ranges from the visible (400–700 nm) to the near 
infrared (NIR) region (about 2400 nm), with hundreds of 
narrow contiguous bands of 10 nm width.5,6 As hyper-
spectral sensors bring in exact details from the most 
significant part of the EM spectrum, many studies have 
been conducted based on their spectral properties. As 
has been reported previously,3,6 hyperspectral tech-
niques are very useful for distinguishing the presence of 
oil film on water surfaces7 in the regions 440–900 nm8 
and 600–900 nm.9 Later, numerous studies evaluated 
the extraction capability of hyperspectral sensors on light 
diesel and crude oil,10,11 on ice-infested waters12 and 
other different types of marine oil spill13–15 more specifi-
cally in the visible-near infrared (VNIR) region.16 Various 
spectral classification algorithms17,18 and endmember 
extraction methodologies19,20 have been developed to 
detect and monitor oil pollution, where reference selec-
tion for oil spill formed a critical topic of hyperspectral 
research.21 The reference spectra are obtained either 
from the laboratory or field measurements, or from the 
remotely sensed image.22–25 A field survey validating the 
remote sensing data for oil spills from the marine envi-
ronment is not practical because of accessibility concerns 
and the complexity of the scene;26 generally, the refer-
ences are directly interpreted by photo-interpretation of 
remotely sensed images.27

The possibility of hyperspectral classification and target 
detection is extended with the development of spectral 
matching or similarity methods that measure the similarity 
between spectral signatures or reflectance curves.28,29 
But these individual spectral similarity algorithms have 
their own limitations in using the band-level informa-
tion and for the degree of effectiveness in detecting oils 
from hyperspectral images.30 Conversely, to negate the 
shortcomings of individual similarity measures like City 
Block Distance (CBD),31 Spectral Angle Mapper (SAM),32 
Euclidean Distance (EUD),33 Spectral Correlation Mapper 
(SCM),34 Spectral Information Divergence (SID)35 and 
Jeffries–Matusita Distance (JMD),36 as well as to inte-
grate their benefits, mixed or hybrid approaches are 
developed. Such methods clearly outperformed the indi-
vidual components, as they combine the potentials of 
the individual measures.37 Techniques such as feature 
enhanced spectral similarity38 and hybrid similarity 
approaches, EUD-SAM, EUD-SCM,33,39 SID-SAM,40 
SID-SCM,41 JMD-SAM,42 JMD-SCM43 and CBD-SAM, 
CBD-SCM, JMD-CBD, JMD-EUD, SID-CBD, SID-EUD44 
have been evaluated on oil-affected hyperspectral 

imagery to produce a significant improvement over the 
individual spectral matching algorithms. The need for 
high-performing algorithms is always a challenge in 
remote sensing, mostly due to the day to day advances in 
sensor and related technologies.

Here, with this research, an attempt is made to scrutinise 
the classification performances of the chi-square distance 
(CHI)-based hybrid similarity measures for hyperspectral 
oil spill mapping as CHI statistics find the relationship 
between two variables by identifying very minute dissim-
ilarities between the pixel vectors.45,46 In this step, the 
newly developed CHI-based hybrid similarity algorithms, 
namely CHI-SAM, CHI-SCM, JMD-CHI and SID-CHI, 
are compared with other existing hybrid measures, 
namely CBD-SAM, CBD-SCM, EUD-SAM, EUD-SCM, 
JMD-CBD, JMD-EUD, JMD-SAM, JMD-SCM, SID-CBD, 
SID-EUD, SID-SAM and SID-SCM, to discriminate oil 
and the other related spectral classes. Furthermore, the 
performance is analysed with the help of discriminatory 
statistics, RSDPW, RSDPB and RSDE.43,47,48 RSDPW is 
formulated to compare the effectiveness of two similarity 
measures, and RSDPB identifies a pixel vector of interest 
from an existing database or spectral library. The RSDE or 
Entropy is derived from RSDPB that measures the uncer-
tainty of a similarity algorithm in material identification 
from a spectral library. Based on the discriminatory statis-
tics, eight highly performing hybrid similarity algorithms, 
viz. SID-CHI, CHI-SCM, SID-CBD, SID-SCM, JMD-CHI, 
CHI-SAM, SID-EUD and SID-SAM, are selected. It is then 
implemented on the four marine spectral classes of the 
Hyperion image, viz. Oil Slick (364 samples), Sheen (959 
samples), Sea Water (545 samples) and Ship Track (106 
samples), revealing higher accuracies for the developed 
CHI-based hybrid similarity, namely CHI-SAM, CHI-SCM, 
JMD-CHI and SID-CHI, relative to the other non-CHI 
algorithms.

Materials and methods
Data description
This research uses the hyperspectral image data acquired 
by the United States’ EO-1 Hyperion Earth observa-
tion satellite. The L1T level image (terrain-corrected 
and georeferenced based on ground control points) 
in GeoTiff format49 of the crude oil accident, Serial ID: 
EO1H1200312007126110KZ (https://earthexplorer.
usgs.gov), obtained by the satellite at 10:27 am (local 
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time) on 6 May 2007, mostly covering the area near 
Liaodong Bay of the Bohai Sea, was studied and is shown 
in Figure 1. Hyperion has 242 contiguous spectral bands 
of wavelength range 400–2500 nm with a spatial resolu-
tion of 30 m/pixel and an average spectral resolution of 
10 nm/band. The predicted signal-to-noise ratio (SNR) of 
this dataset performs well in VNIR bands, where the SNR 
can be up to 150. For short-wave infrared (SWIR) bands 
in the dataset, the SNR is around 50.50,51

Additionally, for wavelengths above 1900 nm, the SNR 
is even less than 50.52 Generally, the effective wavebands 
in the Hyperion image for crude oil detection are in the 
VNIR region.16 In the pre-processing stage after bad-
band removal, 43 continuous bands ranging from bands 
13 to 55 (central wavelength 477.6900–905.0500 nm) in 
the VNIR region are selected and processed for further 
studies on oil spill detection.

Workflow
Figure 2 shows the flow chart of the methodology 
adopted in this research. The Hyperion image is initially 
pre-processed using the spectral subset technique, 
and the bad bands are eliminated, leaving 43 bands for 
subsequent analysis in a subscene of 173 × 301 pixels. 
Further, the image is atmospherically corrected using 
Fast Line-of-Sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH) (https://www.harrisgeospatial.
com/docs/FLAASH.html), which removes the effect of 

atmospheric scattering and absorption features,53 gener-
ating the resultant reflectance image. FLAASH has an 
advantage of spectral polishing that removes consistent 
artefacts from an atmospherically corrected hyperspec-
tral image. Spectral polishing is an inbuilt process that 
can be selected in the FLAASH.54 Initially, the average44 
of each of the four classes, namely Oil Slick, Sheen, Sea 
Water and Ship Track, are collected from the known 
areas52,55 using visual image interpretation to create the 
respective reference vector.22,56 Oil Slick generally repre-
sents a thick layer with a definitive brown or black colour. 
Contrarily, sheens are the thin layer of oils or the least 
contaminated seawater around the true colour oil slicks, 
and are really difficult to distinguish.6 Second, the simi-
larity matching measure and spectral discriminatory algo-
rithms are executed on these average reference vectors 
to select the best performing hybrid similarity measures. 
Finally, the unknown image spectra, namely Oil Slick (364 
samples, Sheen (959 samples), Sea Water (545 samples) 
and Ship Track (106 samples) are compared with the 
reference vectors and examined using a confusion matrix.

From Figure 3, it is evident that the spectral reflec-
tance of water in the Ship Track is higher than that of 
the background Sea Water, which in turn is higher than 
the spectral reflectance of the Sheen and Oil Slick. As 
the thickness of the oil spill changes, the reflectance 
varies within the visible and NIR spectral ranges.16 The 
suspended particulate matter (SPM) in the ship track 
formed by the movement of the ship leads to a rise in the 
water spectrum’s reflective peak.55,57 Also, as the sheen 
is translucent and contains very few hydrocarbons, the 
spectra of sheen are greatly influenced by sea water.6 On 
the whole, all the classes follow nearly the same spectral 
curve. Therefore, a precise discrimination procedure is 
essential to differentiate between them. In this work, the 
formulation of a suitable procedure is addressed where 
the respective reference vector is made with the average 
reflectance values of each class.

To describe the pixel variability, similarity and discrimi-
nation in a Hyperion image, an information-theoretic 
spectral measure called Spectral Information Measure 
(SIM) is applied.58 SIM models the spectral band-to-
band inconsistency arising from uncertainty caused by 
randomness using four statistical moments, specifically 
the mean, variance, skewness (third central moment) 
and kurtosis (fourth central moment). SIM treats each 
pixel as a random variable utilising its spectral signature 
histogram as the desired probability distribution. By this 

Figure 1. Remotely sensed Hyperion data coverage in the 
Bohai Sea (left); the typical targets are shown in the sub-
set (right) (Red = Band 29, Green = Band 20, Blue = Band 
13). The suspended particulate matter (SPM) aggregate, 
as seen in white, is not considered as a typical target as it 
has the same spectra of the Ship Track.
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interpretation, SIM not only defines the randomness of 
a pixel but can also generate high-order statistics of the 
pixel from the spectral signatures Oil Slick (O), Sheen (H), 
Sea Water (S) and Ship Track (T) as in Table. 1. From the 
results, significant differences are not perceived between 
the moment values, realising the need for a better spec-
tral discriminatory procedure.

Development of novel hybrid similarity measures
To facilitate the development of suitable hybrid similarity 
or discriminatory algorithms for efficient oil spill detec-
tion and to quantify it using hyperspectral imagery, this 
research appraises the advantages of the CHI method. For 
each hyperspectral image acquired at a particular wave-
length λi, the pixel vector is represented as r = (r1,r2,r3, … 
… rL) where each component ri, represents a pixel in band 

Figure 2. Technical flow chart.

Figure 3. The reflectance curve for Oil Slick (O), 
Sheen (H), Sea Water (S) and Ship Track (T) spectra.
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image Bi. The corresponding spectral signature of r is 
defined as s = (s1,s2,s3, … … sL) where si represents the 
spectral signature of ri in the form of either radiance or 
reflectance values, and L is the total number of bands. 
Hence the chi-square distance (CHI or χ2) between two 
spectral signatures si = (si1,si2, … … sil) and sj = (sj1,sj2, … … sjl) 
is formulated as
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Here, using Equation 1, four new CHI hybrid algorithms 
are developed by orthogonally projecting the spectral 
capabilities of individual measures and the tangent func-
tion. The newly developed hybrid similarity measures 
or algorithms provided in Equations 2–5 are compared 
and evaluated quantitatively with other existing hybrid 
similarity algorithms, namely CBD-SAM, CBD-SCM, 
EUD-SAM, EUD-SCM, JMD-CBD, JMD-EUD, JMD-SAM, 
JMD-SCM, SID-CBD, SID-EUD, SID-SAM and SID-SCM 
to assess their classification performance.

	 CHI-SAM = CHI × tan(SAM)	 (2)

	 CHI-SCM = CHI × tan(SCM)	 (3)

	 JMD-CHI = JMD × tan(CHI)	 (4)

	 SID-CHI = SID × tan(CHI)	 (5)

Spectral discriminability measures
The spectral similarity measures could measure the 
similarity or dissimilarity between any two pixel-
vectors only, but this procedure alone is not sufficient 
to discriminate when there are more than two pixel-
vectors or spectral-classes. This study defines an objec-
tive statistical criterion to evaluate the performance of 
all the hybrid similarity measures based on the spectral 
discriminatory statistics, namely RSDPW, RSDPB and 
RSDE. In order to compare the effectiveness between 
two hybrid similarity measures, the relative spectral 

discriminatory power (RSDPW) is formulated. It calcu-
lates the spectral discriminatory power of one pixel-
vector from another relative to a reference pixel vector. 
Assume that m(.,.) is a spectral measure, d is the refer-
ence spectral signature and si and sj are the spectral 
signatures of any pair of two pixel-vectors that is used 
to classify d. Then, the relative spectral discriminatory 
power is given as
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Obviously, the higher the RSDPWm(si,sj;d), the better 
the discrimination power of the similarity measure m(.,.).

To identify a pixel vector of interest or target spec-
trum, t, from an existing database or a spectral library Δ, 
another criterion called relative spectral discriminatory 
probability (RSDPB) is needed.

The RSDPB of all sk in Δ relative to t is:
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For k = 1, …, K; where m(.,.) is any of the similarity measure 
functions; t is the target spectrum; 1{ }Kk ks =  is the K spec-
tral signatures in the database Δ. The resulting probability 
vector Pt,Δ = [Pt,Δ(1),Pt,Δ(2),Pt,Δ(3), … …,Pt,Δ(k)]T, is called 
the relative spectral discriminatory probability vector of 
Δ relative to t. Then the target spectrum t is identified 
by selecting the one with the smallest relative spectral 
discriminatory probability, thereby t and the selected one 
will have the minimum spectral discrimination.

An uncertainty measure called relative spectral discrim-
inatory entropy (RSDE) derived from RSDPB measures 
the uncertainty of identifying the target spectral signa-
ture t in the database Δ. The spectral discriminatory 
entropy of Δ with respect to t is given by

	 ( ) ( ) ( )D D
=

D =-åRSDE, , ,
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; log 
K

t t
k

H t P k P k 	 (8)

Classes Mean Variance Skewness Kurtosis
Oil Slick 0.10269 0.000578 –3.97E-06 4.90E-07
Sheen 0.105793 0.000515 –2.55E-06 3.80E-07
Sea Water 0.109928 0.000514 –3.32E-06 3.83E-07
Ship Track 0.111169 0.000525 –4.24E-06 4.10E-07

Table 1. Four moments produced by SIM for four spectral signatures in Figure 3.
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where Pt,(k) is the spectral discriminatory probability of t 
using the spectral database Δ. The smaller the HRSDE,(t;Δ), 
the better is the chance to identify t.

Selection of high performing hybrid similarity 
algorithm
The ranks mentioned in Tables 3–7 based on RSDPW, 
RSPB and RSDE emphasise the significance of classi-
fiers in discrimination of relative performances from 
hyperspectral images. For this perspective, the reference 
vector generated for each class is used to classify the 
target vector by applying the respective hybrid similarity 
algorithms.

Supervised classification and accuracy assessment
The selected hybrid similarity methods are extended in 
a supervised framework for improved pixel-based clas-
sification of the Hyperion image. Now, in this spectral 
matching based classification approach, each pixel in 
the sampling area is considered as a target spectrum, 
which is then compared with the reference vectors to 
generate classified images. The target is labelled to the 
corresponding reference spectrum according to the 
least matching value obtained, from which the confusion 
matrices are generated. Based on the confusion matrix, 
the overall accuracy (OA) of the classifiers is produced 

and is used for performance comparison. Additionally, the 
statistical results are manifested back to the hyperspec-
tral subset to understand the real-world significance of 
classifier performances. Also, the importance of the VNIR 
range in hyperspectral oil spill analysis is highlighted with 
a comparative study between classifiers.

Results and discussion
In this paper, initially, the CHI-based hybrid simi-
larity algorithms, CHI-SAM, CHI-SCM, JMD-CHI and 
SID-CHI, are compared with the existing hybrid similarity 
methods, CBD-SAM, CBD-SCM, EUD-SAM, EUD-SCM, 
JMD-CBD, JMD-EUD, JMD-SAM, JMD-SCM, SID-CBD, 
SID-EUD, SID-SAM and SID-SCM, to determine their 
capabilities to classify Oil Slick, Sheen, Sea Water and 
Ship Track spectral classes using spectral similarity and 
discriminatory statistics. Table 2 shows the results of 
hybrid spectral similarity values between Oil Slick, Sheen, 
Sea Water and Ship Track. Here, the high values specify 
better discrimination and the least value identifies a high 
similarity between the vectors.

Table 2 shows the spectral similarity values among 
four classes obtained by different hybrid spectral simi-
larity measures. These similarity algorithms cannot help 

Methods O-H O-S O-T H-S H-T S-T
CBD-SAM 0.175011 0.359529 0.407419 0.184515 0.232405 0.047888
CBD-SCM 0.175008 0.359533 0.407536 0.184548 0.232678 0.047983
CHI-SAM 9.49E-07 5.48E-06 8.34E-06 7.20E-07 2.08E-06 8.97E-08
CHI-SCM 5.47E-07 6.04E-06 1.56E-05 2.01E-06 6.51E-06 2.93E-07
EUD-SAM 0.028718 0.056251 0.064511 0.02953 0.039141 0.01145
EUD-SCM 0.028695 0.056273 0.065241 0.029733 0.040732 0.011842
JMD-CBD 0.002379 0.006676 0.008238 0.001359 0.002735 0.000288
JMD-CHI 5.20E-07 2.86E-06 4.17E-06 3.49E-07 9.96E-07 4.50E-08
JMD-EUD 0.000386 0.000999 0.001232 0.000215 0.000452 6.87E-05
JMD-SAM 0.000331 0.000605 0.000729 0.000109 0.000279 7.17E-05
JMD-SCM 0.00019 0.000667 0.001365 0.000305 0.000873 0.000234
SID-CBD 0.000128 0.000474 0.000629 3.96E-05 0.000126 6.91E-06
SID-CHI 2.80E-08 2.03E-07 3.18E-07 1.02E-08 4.61E-08 1.08E-09
SID-EUD 2.08E-05 7.10E-05 9.41E-05 6.27E-06 2.09E-05 1.65E-06
SID-SAM 1.78E-05 4.30E-05 5.57E-05 3.19E-06 1.29E-05 1.72E-06
SID-SCM 1.03E-05 4.74E-05 0.000104 8.88E-06 4.03E-05 5.62E-06

Table 2. Similarity values produced based on different hybrid similarity measures between spectral signature pairs of Oil Slick 
(O), Sheen (H), Sea Water (S) and Ship Track (T).
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us to define conclusively any suitable hybrid measures59 
to discriminate oil spill classes, because spectral simi-
larity measures calculate the similarity or dissimilarity 
between two spectral signatures only. In addition, these 
paired discrimination procedures cannot completely 
determine differences between more than two spectral 
classes effectively.41 Moreover, as they use different 
measurement units, the performances can only be 
evaluated with comparable statistics. Now it becomes 
essential to use spectral discriminatory statistics like 
RSDPW, RSDPB and RSDE that can check the effec-
tiveness of all the spectral similarity algorithms to clas-
sify a set of spectral classes based on a set of selected 
reference vectors. RSDPW, RSDPB and RSDE values 
also select the best hybrid spectral similarity algorithms 
for further hyperspectral image classification. Spectral 
discriminatory measures deliver authenticity and preci-
sion of comparison.47

Tables 3a and 3b show the result of RSDPW for the 
four spectral classes, viz. Oil Slick (O), Sheen (H), Sea 
Water (S) and Ship Track (T). In the table, the abbre-
viations in the column stand for various combinations of 
the four classes. For example, in the case of RSDPW of 
CBD-SAM, (H,S;O) denotes the spectral discrimination 
capability of CBD-SAM between the spectral signatures 
of Sheen (H) and Sea Water (S) relative to the reference 

spectral signature, Oil Slick (O). The higher value obtained 
for RSDPW is taken as a demonstration of the power of 
that particular measure. Similarly, all other combinations 
must be read. Here the performance rankings for the 
best five hybrid measures (bold) are identified inside the 
columns in brackets.

Tables 3a and 3b show the RSDPW values of all the 
hybrid classifiers. From these values, the best hybrid 
similarity measures are selected based on analysing their 
ranks and their overall occurrence in different combi-
nations. In the case of Oil Slick or Sheen as the refer-
ence vector, the hybrid measures CHI-SCM, CHI-SAM, 
SID-SCM, SID-CHI and JMD-CHI are selected based on 
their higher-ranking values. For Sea Water or Ship Track 
as the reference vector, the selected hybrid measures 
are SID-CHI, SID-CBD, JMD-CHI, CHI-SAM, SID-EUD, 
which achieved promising values.

To compute the RSDPB and RSDE for evaluating which 
measure is more effective, mixed spectral signatures or 
mixtures are generated to use as the target signature (t) 
for identification. Note that target signature (t) is gener-
ated randomly.41,58,60 Here, the database is made up of 
a mixture of four classes ∆ = {Oil Slick, Sheen, Sea Water, 
Ship Track}. Four trials are conducted, in the first trial 
(mixture 1), the target signature is composed of 0.8125 
Oil Slick and the remaining 0.1875 comprising all the 

Methods (H,S;O) (H,T;O) (S,T;O) (S,O;H) (O,T;H) (S,T;H)
CBD-SAM 2.0543 2.3280 1.1332 1.0543 1.3279 1.2595
CBD-SCM 2.0544 2.3287 1.1335 1.0545 1.3295 1.2608
CHI-SAM 5.7774 (3) 8.7909 (4) 1.5216 (5) 1.3191 2.1932 (4) 2.8930
CHI-SCM 11.0499 (1) 28.5600 (1) 2.5846(1) 3.6676 (2) 11.9098 (1) 3.2473 (5)
EUD-SAM 1.9587 2.2463 1.1468 1.0283 1.3630 1.3255
EUD-SCM 1.9611 2.2736 1.1594 1.0362 1.4194 1.3699
JMD-CBD 2.8060 3.4623 1.2339 1.7503 1.1494 2.0118
JMD-CHI 5.5016 (4) 8.0210 (5) 1.4579 1.4900 1.9166 (5) 2.8556
JMD-EUD 2.5877 3.1897 1.2326 1.7953 1.1711 2.1026
JMD-SAM 1.8298 2.2054 1.2053 3.0219 (5) 1.1851 2.5498
JMD-SCM 3.4997 7.1651 2.0473 (3) 1.6009 4.5819 (2) 2.8620
SID-CBD 3.7040 4.9115 1.3260 3.2339 (4) 1.0132 3.1917
SID-CHI 7.2624 (2) 11.3785 (2) 1.5668 (4) 2.7529 1.6457 4.5305 (2)
SID-EUD 3.4159 4.5248 1.3246 3.3170 (3) 1.0056 3.3357 (4)
SID-SAM 2.4154 3.1286 1.2952 5.5832 (1) 1.3802 4.0452 (3)
SID-SCM 4.6198 (5) 10.1643 (3) 2.2002 (2) 1.1541 3.9344 (3) 4.5406 (1)

Table 3a. Relative Spectral Discriminatory Power (RSDPW) values produced for Oil Slick (O) and Sheen (H) as reference vectors. 
Best five hybrid measures are bolded.
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other three spectra in equal proportion. For the second 
trial (mixture 2), the target signature is composed of 
0.8125 Sheen, and the remaining 0.1875 is the other 
three spectra in equal proportion. In the third trial 
(mixture 3), the target signature is composed of 0.8125 
Sea Water and the remaining 0.1875 for the remaining 
three spectra in equal proportion. Likewise, in the fourth 
trial (mixture 4), the target signature is composed of 
0.8125 Ship Track and the remaining 0.1875 for the 
other three spectra in equal proportion. Tables 4–7 show 
the relative spectral discriminatory probability vectors 
and RSDE of the spectral signatures in the database 
when compared with the mixture t. From the RSDPB 
table, the target signature (t) can be identified from the 
database ∆ which has the smallest probability value. For 
RSDE, ranks are assigned to the classifiers to identify 
the best performing algorithms based on entropy values. 
The lower the entropy value, the higher is the chance of 
getting correctly matched targets.

From Table 4, for RSDPB, it is evident that the Oil Slick 
spectra and the mixture t represented as (O-t), i.e. the 
first column of Table 4, has the minimum spectral discrim-
ination probability, highlighting the prominence of Oil 
Slick in mixture 1. Here, the mixture 1 entropy shows the 
least uncertainty value 0.9554 for the CHI-SCM hybrid 
similarity measure followed by the hybrids SID-CHI, 

CHI-SAM, SID-SCM and JMD-CHI attaining values of 
1.1183, 1.1834, 1.1893 and 1.2044, respectively.

From Table 5, for RSDPB, it is clear that the Sheen 
spectra and the mixture t represented as (H-t), i.e. the 
second column of Table 5, have the minimum spectral 
discrimination probability, highlighting the prominence 
of Sheen in mixture 2. In mixture 2, the least entropy is 
obtained for CHI-SCM with a value of 1.0920, followed 
by SID-SCM, SID-SAM, JMD-SCM and SID-CHI retaining 
values of 1.2285, 1.2879, 1.3365 and 1.3593, respec-
tively.

From Table 6, for RSDPB, it is apparent that the Sea 
Water spectra and the mixture t represented as (S-t), i.e. 
the third column of Table 6. have the minimum spec-
tral discrimination probability, highlighting the promi-
nence of Sea Water in mixture 3. In mixture 3, SID-CHI 
produced the least entropy value of 0.3209, followed 
by SID-CBD, SID-EUD, SID-SAM and JMD-CHI with 
values of 0.5259, 0.5723, 0.5902 and 0.6285, respec-
tively.

From Table 7, for RSDPB, it is seen that the Ship Track 
spectra and the mixture t represented as (T-t), i.e. the 
fourth column of Table 7, have the minimum spectral 
discrimination probability, highlighting the prominence 
of Ship Track in mixture 4. Here, again SID-CHI produced 
the least entropy value 0.4726, followed by SID-CBD, 

Methods (H,O;S) (T,H;S) (T,O;S) (H,O;T) (S,O;T) (S,H;T)
CBD-SAM 1.9485 7.5077 3.8531 1.7531 8.5078 4.8531
CBD-SCM 1.9482 7.4929 3.8461 1.7515 8.4933 4.8492
CHI-SAM 7.6207 61.1323 (4) 8.0219 (2) 4.0082 93.0188 (2) 23.2073 (2)
CHI-SCM 3.0128 20.6504 6.8542 (4) 2.3980 53.3739 22.2573 (3)
EUD-SAM 1.9049 4.9126 2.5790 1.6481 5.6340 3.4184
EUD-SCM 1.8926 4.7519 2.5108 1.6017 5.5091 3.4395
JMD-CBD 4.9114 23.2113 4.7260 3.0122 28.6402 9.5079
JMD-CHI 8.1973 (5) 63.4979 (3) 7.7462 (3) 4.1851 (5) 92.5762 (3) 22.1203 (4)
JMD-EUD 4.6458 14.5461 3.1310 2.7236 17.9300 6.5833
JMD-SAM 5.5295 8.4327 1.5250 2.6137 10.1638 3.8886
JMD-SCM 2.1861 2.8486 1.3031 1.5638 5.8319 3.7294
SID-CBD 11.9784 (3) 68.6979 (2) 5.7351 (5) 4.9764 (2) 91.0930 (4) 18.3051 (5)
SID-CHI 19.9925 (1) 187.9329 (1) 9.4002 (1) 6.9140 (1) 294.4480 (1) 42.5870 (1)
SID-EUD 11.3306 (4) 43.0516 (5) 3.7996 4.4995 (3) 57.0282 (5) 12.6745
SID-SAM 13.4858 (2) 24.9581 1.8507 4.3180 (4) 32.3269 7.4865
SID-SCM 5.3316 8.4308 1.5813 2.5834 18.5490 7.1800

Table 3b. Relative Spectral Discriminatory Power (RSDPW) values produced for Sea Water (S) and Ship Track (T) as reference 
vectors. Best five hybrid measures are bolded.
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JMD-CHI, SID-EUD and CHI-SAM having values of 
0.5993, 0.6788, 0.6832 and 0.6931 respectively. Thus, 
it is evident from the above Tables 4–7 that SID-CHI, 
CHI-SCM, SID-CBD, SID-SCM, JMD-CHI, CHI-SAM, 

SID-EUD and SID-SAM are the best among all the hybrid 
measures tested for uncertainty.

Overall, the higher ranks of CHI-based hybrid simi-
larity measures, viz. SID-CHI, JMD-CHI, CHI-SAM and 

Methods O-t H-t S-t T-t RSDE
CBD-SAM 0.0714 0.1409 0.3648 0.4229 1.7261
CBD-SCM 0.0714 0.1409 0.3647 0.4230 1.7261
CHI-SAM 0.0032 0.0391 0.3599 0.5979 1.1834 (3)
CHI-SCM 0.0020 0.0197 0.2457 0.7327 0.9554 (1)
EUD-SAM 0.0703 0.1515 0.3575 0.4207 1.7378
EUD-SCM 0.0700 0.1507 0.3559 0.4234 1.7354
JMD-CBD 0.0162 0.1045 0.3841 0.4952 1.4692
JMD-CHI 0.0033 0.0426 0.3698 0.5844 1.2044 (5)
JMD-EUD 0.0165 0.1157 0.3781 0.4896 1.4928
JMD-SAM 0.0175 0.1753 0.3553 0.4519 1.5906
JMD-SCM 0.0122 0.0983 0.2709 0.6186 1.3455
SID-CBD 0.0036 0.0749 0.3811 0.5404 1.3193
SID-CHI 0.0007 0.0295 0.3542 0.6157 1.1183 (2)
SID-EUD 0.0037 0.0833 0.3766 0.5364 1.3409
SID-SAM 0.0039 0.1289 0.3614 0.5057 1.4406
SID-SCM 0.0026 0.0693 0.2642 0.6638 1.1893 (4)

Table 4. Relative spectral discriminatory probability vectors produced by the hybrid similarity measures with the target t chosen 
to be a mixture of 0.8125 Oil Slick, 0.0625 Sheen, 0.0625 Sea Water and 0.0625 Ship Track (Mixture 1).

Methods O-t H-t S-t T-t RSDE
CBD-SAM 0.3212 0.0255 0.2862 0.3671 1.7087
CBD-SCM 0.3211 0.0255 0.2861 0.3673 1.7086
CHI-SAM 0.3340 0.0004 0.1619 0.5037 1.4566
CHI-SCM 0.0795 0.0006 0.1945 0.7255 1.0920 (1)
EUD-SAM 0.3161 0.0306 0.2777 0.3756 1.7229
EUD-SCM 0.3120 0.0302 0.2753 0.3825 1.7194
JMD-CBD 0.4200 0.0032 0.1874 0.3895 1.5345
JMD-CHI 0.3616 0.0004 0.1580 0.4801 1.4640
JMD-EUD 0.4146 0.0039 0.1830 0.3985 1.5349
JMD-SAM 0.4922 0.0049 0.1376 0.3653 1.4652
JMD-SCM 0.1436 0.0087 0.2027 0.6450 1.3365 (4)
SID-CBD 0.5065 0.0004 0.1134 0.3797 1.3879
SID-CHI 0.4361 0.0000 0.0957 0.4681 1.3593 (5)
SID-EUD 0.5002 0.0004 0.1108 0.3886 1.3865
SID-SAM 0.5743 0.0005 0.0806 0.3445 1.2879 (3)
SID-SCM 0.1871 0.0011 0.1325 0.6793 1.2285 (2)

Table 5. Relative spectral discriminatory probability vectors produced by the hybrid similarity measures with the target t cho-
sen to be a mixture of 0.8125 Sheen, 0.0625 Oil Slick, 0.0625 Sea Water and 0.0625 Ship Track (Mixture 2).
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CHI-SCM, emphasise their strong performance in spec-
tral discrimination analysis of hyperspectral images. The 
selected hybrid similarity methods, namely SID-CHI, 
CHI-SCM, SID-CBD, SID-SCM, JMD-CHI, CHI-SAM, 

SID-EUD and SID-SAM, are extended in a supervised 
framework for improved pixel-based classification of the 
Hyperion image. The target pixels or unknown image 
pixels are collected from the locations shown in Figure 4.

Methods O-t H-t S-t T-t RSDE
CBD-SAM 0.5550 0.2593 0.0524 0.1333 1.5868
CBD-SCM 0.5549 0.2593 0.0524 0.1334 1.5870
CHI-SAM 0.8736 0.0934 0.0006 0.0324 0.6566
CHI-SCM 0.7144 0.2060 0.0006 0.0790 1.1121
EUD-SAM 0.5349 0.2588 0.0503 0.1560 1.6225
EUD-SCM 0.5321 0.2592 0.0500 0.1588 1.6268
JMD-CBD 0.7883 0.1383 0.0059 0.0674 0.9714
JMD-CHI 0.8814 0.0873 0.0006 0.0307 0.6285 (5)
JMD-EUD 0.7679 0.1436 0.0059 0.0826 1.0358
JMD-SAM 0.7616 0.1229 0.0051 0.1104 1.0610
JMD-SCM 0.5331 0.2320 0.0045 0.2304 1.4958
SID-CBD 0.9091 0.0617 0.0006 0.0287 0.5259 (2)
SID-CHI 0.9513 0.0364 0.0001 0.0122 0.3209 (1)
SID-EUD 0.8988 0.0650 0.0006 0.0356 0.5723 (3)
SID-SAM 0.8958 0.0559 0.0005 0.0479 0.5902 (4)
SID-SCM 0.7528 0.1266 0.0005 0.1200 1.0586

Table 6. Relative spectral discriminatory probability vectors produced by the hybrid similarity measures with the target t chosen 
to be a mixture of 0.8125 Sea Water, 0.0625 Oil Slick, 0.0625 Sheen and 0.0625 Ship Track (Mixture 3).

Methods O-t H-t S-t T-t RSDE
CBD-SAM 0.6056 0.3148 0.0082 0.0714 1.2916

CBD-SCM 0.6052 0.3148 0.0086 0.0714 1.2940

CHI-SAM 0.8295 0.1660 0.0030 0.0015 0.6931 (5)
CHI-SCM 0.7290 0.2642 0.0047 0.0021 0.8948
EUD-SAM 0.5567 0.3112 0.0643 0.0678 1.5122
EUD-SCM 0.5520 0.3161 0.0650 0.0668 1.5157
JMD-CBD 0.7699 0.2178 0.0028 0.0096 0.8570
JMD-CHI 0.8357 0.1597 0.0032 0.0014 0.6788 (3)
JMD-EUD 0.7352 0.2313 0.0236 0.0099 1.0081
JMD-SAM 0.7047 0.2339 0.0524 0.0090 1.1303
JMD-SCM 0.5707 0.3429 0.0744 0.0120 1.3468
SID-CBD 0.8609 0.1371 0.0009 0.0012 0.5993 (2)
SID-CHI 0.9019 0.0970 0.0010 0.0002 0.4726 (1)
SID-EUD 0.8421 0.1491 0.0075 0.0012 0.6832 (4)
SID-SAM 0.8272 0.1546 0.0171 0.0012 0.7545
SID-SCM 0.7263 0.2457 0.0263 0.0017 0.9862

Table 7. Relative spectral discriminatory probability vectors produced by the hybrid similarity measures with target t chosen to 
be a mixture of 0.8125 Ship Track, 0.0625 Oil Slick, 0.0625 Sheen and 0.0625 Sea Water (Mixture 4).
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The confusion matrix results from Table 8 have produced 
considerably higher overall accuracy for JMD-CHI 
(85 %) followed by the other CHI-based hybrids, namely 
CHI-SAM (84 %), CHI-SCM (83 %) and SID-CHI (82 %). 
Together with the discriminatory statistics output, the 
results demonstrated the superiority of the developed 
CHI hybrid spectral similarity measures.

The resultant images in Figure 5 show how the different 
CHI hybrids performed while classifying Hyperion 
imagery (supplementary Figure S1 shows the classifica-
tion result for the subset shown in Figure 4). Notably, all 
the classes are correctly identified and delineated. The 
violet colour produced outside the Ship Track is due to 
the SPM prominent in the Sea Water. For further ratifi-
cation, the overall accuracy of the CHI-based hybrids is 
tested for the SWIR, and all bands in Hyperion’s range.

The values of overall accuracy for the CHI algorithms 
in Table 9 confirm that the VNIR bands produced higher 
OA, recommending the usage of VNIR bands in detecting 
crude oil spills.

Previous research based on spectral similarities 
exposed more details on individual spectral similarity 
measures, but only a very few ventured into hyperspec-
tral remote sensing applications like marine oil spill detec-
tion. Our research developed novel CHI hybrid spec-
tral similarity methods that combined the strengths of 
individual algorithms, which were compared and tested 
for their discrimination capability. The promising results 
explicitly obtained by CHI-based hybrids and their supe-
riority in the VNIR spectral range indicate the need for 
more studies in the hyperspectral characterisation of 
marine oil spill detection.

Conclusion
Hyperspectral imagery brings the capability to collect 
minute details of the sea surface that, when combined 
with suitable processing and analysis techniques, serves 
as a tool for the continuous monitoring of an oil spill. In 

Figure 4. Sampling locations of hyperspectral targets of 
marine spectral classes, viz. Oil Slick (O), Sheen (H), Sea Water 
(S) and Ship Track (T).



12	 Spectral Similarity Algorithm-Based Image Classification for Oil Spill Mapping

this study, the investigation of the very high-resolution 
hyperspectral image from Hyperion is performed to 
analyse marine oil spill-related spectra through photo-
interpretation. This is carried out with regard to the hybrid 
spectral similarity approach emphasising the capability 
of CHI-based hybrid algorithms. The oil spill detection 
method based on spectral similarity generated a refer-
ence vector for each class, Oil Slick, Sheen, Sea Water 

and Ship Track, using the average values of pixels for each 
of the 43 channels. The similarity matching measure and 
the respective spectral discriminatory statistics RSDPW, 
RSDPB and RSDE enabled the selection of eight efficient 
hybrid similarity measures. After the classification and 
accuracy assessment, it can be seen that the CHI-based 
hybrid classifier JMD-CHI produced the highest OA of 
85 %, followed by CHI-SAM, CHI-SCM and SID-CHI 

Method Reference data
Overall accuracy

CHI-SAM

Classes Oil Slick Sheen Sea Water Ship Track
C

la
ss

ifi
ed

 d
at

a

Oil Slick 310 1 0 0

84 %
Sheen 54 958 59 2
Sea Water 0 0 321 25
Ship Track 0 0 165 79

CHI-SCM

Oil Slick 305 1 0 0

83 %
Sheen 59 958 94 7
Sea Water 0 0 286 0
Ship Track 0 0 165 99

JMD-CHI

Oil Slick 310 1 0 0

85 %
Sheen 54 958 55 1
Sea Water 0 0 325 26
Ship Track 0 0 165 79

SID-CBD

Oil Slick 321 1 0 0

80 %
Sheen 43 958 143 3
Sea Water 0 0 237 30
Ship Track 0 0 165 73

SID-CHI

Oil Slick 317 1 0 0

82 %
Sheen 47 958 113 2
Sea Water 0 0 267 24
Ship Track 0 0 165 80

SID-EUD

Oil Slick 324 2 0 0

78 %
Sheen 40 957 197 3
Sea Water 0 0 183 23
Ship Track 0 0 165 80

SID-SAM

Oil Slick 331 3 0 0

74 %
Sheen 33 956 287 5
Sea Water 0 0 93 17
Ship Track 0 0 165 84

SID-SCM

Oil Slick 331 3 0 0

74 %
Sheen 31 956 287 4
Sea Water 2 0 93 20
Ship Track 0 0 165 82

Table 8. The confusion matrix for the selected hybrid similarity measures.
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with OA of 84 %, 83 % and 82 %, respectively. Overall, 
the supervised classification methodology allowed the 
delineation of the target spectrum into respective classes 
serving as the best evidence for the performance evalu-
ation of the developed CHI hybrids. Our results have 
shown that the systematic application of the developed 
chi-square distance-based similarity measures on hyper-
spectral images revealed detailed information on oil spills 
in the sea.
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