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In this work we propose an efficient approach to image segmentation for multispectral images of unstained blood films and automatic counting of 

erythrocytes. Our method takes advantage of Beer–Lambert’s law by using, first, a statistical standardisation equation applied to transmittance 

images, followed by the local adaptive threshold to detect the blood cells and hysteresis contour closing to obtain the complete blood cell bounda-

ries, and finally the watershed algorithm is used. With this method, image pre-processing is not required, which leads to time savings. We obtained 

the following results that show that our technique is effective, efficient and fast: Precision of 98.47 % and Recall of 98.23 %, a degree of precision 

(F-Measurement) of 98.34 % and an Accuracy of 96.75 %.
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Introduction
Malaria continues to be a common and critical public 
health problem in developing countries. It is caused 
by Plasmodium parasites that are transmitted through 
the bite of mosquitoes.1 In 2018, 228 million cases of 
malaria were recorded and 405,000 deaths from this 
disease, mostly children under five years old, and mostly 
in Sub-Saharan Africa.2 Early and reliable detection is 
needed for quick action and is considered as an effective 

way to fight this pandemic. Gold standard diagnostics 
are made by blood collection and visual inspection by 
clinic staff using simple, visible light-based microscopes. 
This manual process is time-consuming and unreliable. 
In this paper, we discuss detection and segmentation of 
red blood cells in multispectral and multimodal unstained 
blood smear images for automatic counting of erythro-
cytes in an effort to achieve computer-assisted malaria 
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diagnosis. Automatic malaria diagnosis based on image 
processing is today an active field of research due to 
the advent of computer-aided diagnosis.3 Generally, the 
analysis begins with image pre-processing, followed by 
segmentation and finally classification. According to the 
state-of-the-art, several works have proposed a number 
of methods for segmentation in malaria diagnosis. We 
highlight the following methods.

Otsu4–7 is a well-established technique based on a 
global thresholding.8 The principle is built on the calcula-
tion of an optimal threshold (which maximises the inter-
class variance) from the image histogram. This approach 
is simple, fast and well adapted to bimodal histograms 
(background and foreground) such as blood smear images. 
However, it does not consider the spatial position of 
pixels in the image. Uneven illumination images are also 
missed in the processing, making it difficult to find the 
optimal threshold.

Watershed segmentation9 describes the image 
as a topographic landscape with ridges and valleys.10 
Considering images as reliefs, the grey levels are identi-
fied as altitudes. The image is thus subdivided into water-
sheds, corresponding to the geographical space in which 
all the waters converge towards the same minimum. 
These basins are then delimited by ridge lines or water-
sheds. They make it possible to identify and extract 
continuous and homogeneous regions of the image 
(objects such as cells). Although sensitive to noise, it has 
shown a tendency towards oversegmentation because 
each minimum generates a watershed.

The K-means algorithm11,12 partitions the points in the 
data matrix X into K clusters. This partition is iterative 
and minimises the sum, over all clusters, of the within-
cluster sums of point-to-cluster-centroid distances.12 
The algorithm is initialised by a randomly chosen set of 
centres. Afterwards, it iteratively searches the optimal 
partition. Each pixel is assigned to their nearest cluster 
centroid. After all pixels have been assigned, the new 
cluster centroids are recalculated by the average of each 
cluster. The algorithm stops when no further changes are 
made. This is the steady state. Its simplicity and its ability 
to process large datasets makes it effective. It works well 
with uneven illumination images. However, the result is 
highly dependent on the starting centres. Therefore, it 
is necessary to run the algorithm several times before 
reaching the optimal solution. A prior knowledge of the 
data is also essential. Applied to blood cells, the algo-
rithm leads to a partial segmentation of the blood cells. 

In fact, it does not consider the spatial dependencies of 
the pixels. Moreover, the boundaries of the partitions are 
different from the cell contours.

Hough’s transform13,14 is a pattern recognition method 
that uses the spatial information of the characteristic 
points of the image. In its implementation, it allows to 
pass from the space of the acquired image to the space 
of the parameters that represent the geometrical shapes 
searched for in the image.15 Robust to noise, Hough’s 
transform is also a robust curve detector, especially the 
circular Hough transform for circular shapes such as red 
blood cells. The drawback of this method is the diffi-
culty in identifying and classifying unwanted contours, as 
well as discontinuities in contours. Changes in the slope 
(generally closed) around the area of interest towards 
an equilibrium position at the edges of the object must 
be detected under the action of several forces (internal 
energy, potential energy and external energy). This equi-
librium position is the one that minimises the energy. This 
technique is called active contour16–18 and is suitable for 
several imaging applications. But the result depends on 
the initial setting, which leads to false contours if incor-
rectly fixed. It also encounters difficulties in detecting 
several objects in the same image as well as digital insta-
bility and does not perform well in segmenting highly 
overlapping cells.19

Fuzzy Logic Segmentation20 implements the concept 
of degree of membership. It defines the membership 
function which lies at the heart of any fuzzy logic system. 
The capability of fuzzy rule-based techniques significantly 
depends upon it. The fuzzy logic is flexible enough to 
consider inaccuracies and uncertainties. Imitating human 
reasoning, it is easy to understand even by non-special-
ists. However, the accuracy of the segmentation is not 
very high and the number of classes of objects in the 
image must be known in advance.

Thus, these methods depend on the characteristics 
of the image, which are affected by a number of factors 
such as the acquisition system, the red blood staining 
type etc. As a result of the approaches described 
above, it is challenging to provide a universal method, 
especially for the type of images used in this work. 
Various methods have been proposed with detection 
rates higher than 98 % compared to manual counting.13 
However, these techniques are very sensitive to noise 
and involve pre-processing steps which require the 
acquisition of additional images, making them time 
consuming. To counter this, we employ front-end 
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processing using image standardisation in transmission 
mode aiming to isolate the red blood cells and facili-
tate the segmentation.

Materials and methods
Multispectral and multimodal microscope
The image acquisition device consists of a modified 
Brunel optical microscope. Zoueu et al.12,21 introduced 
the concept of unstained blood smear malaria diagnosis 
using spectral imaging with an initial microscope design 
and in 2011, Brydegaard et al.22 built the model used 
in this work. The system is composed of three acqui-
sition modes (transmission, reflection and scattering), 
using a set of 13 wavelenths ranging from ultraviolet 
to near infrared (375–940 mn). This device has been 
previously described by Brydegaard et al.22 It is a modi-
fied commercial metallurgical microscope (Brunel SP80). 
The ocular was substituted by a 5 Mpx (2592 × 1944) 
monochromatic CMOS camera (Guppy-503B, Allied 
Vision Technology, with a MT9P031 sensor from Micron/
Aptina) equipped with individual pixel size of 2.2 × 2.2 µm, 
each having 12-bit depth.23

The original filament light sources were substituted by 
a set multiplexing module of LEDs. The whole system 
was controlled by a PC running a custom-made LabVIEW 
code [National Instruments (NI)].

Image acquisition
The program controls camera exposure time and gain, LED 
multiplexing and current through the NI data acquisition 
board.22 Bright reference is used to calibrate the expo-
sure times and gains and sample images are captured and 
saved in 12-bit unsigned integer images in TIFF format 
(Figure 1). The result is a low-contrast greyscale image. 
The blood cells cannot obviously be differentiated from 
the background contribution. The proposed method aims 
to process these acquired images for detection, segmen-
tation and counting of blood cells.

All samples for all geometries (39 images) were acquired 
keeping the same region of interest.19–21 The spectral 
image is represented by a 2D matrix:
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where I is a spectral image, S is the emission spectrum, R 
the sample response and D the detector sensitivity.

If we consider the spectral dimension, we have a 3D 
image Isyl for each geometry.

Pre-processing
Initially, the pre-processing is performed using a custom-
ised algorithm in MATLAB (MathWorks). Once acquired, 
the images are saved and backgrounds are subtracted 
from the sample image, followed by image normalisation 
to ensure homogeneous illumination. Spectral images are 
obtained as below:
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Il is the greyscale image at wavelength l, ISl is the sample 
image, IRl is the bright reference image and IBl is the dark 
reference image.

To obtain 13 spectral images for each mode, a total of 
39 images (13 samples, 13 bright reference images and 
13 dark reference images) are taken. The final spectral 
images of a blood smear sample consists of 39 greyscale 
images (13 per mode) requiring extra acquisition time 
for the additional images needed in the normalisation 
Equation (2). Finally, a 2D-median filter is applied to the 
normalised images in order to remove the noise.

Beer–Lambert’s law in transmission
Beer–Lambert’s law establishes a proportionality 
between the concentration of a chemical entity and the 
length path (thickness) of light in each media. According 
to this law the absorbance is:

A = elc = –log(T),

Figure 1. Original sample image acquired with LED light 
at 435 nm in transmission mode.
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where l is the optical path length (thickness), c is concen-
tration, ε is absorptivity and T is transmittance.

Transmittance is, therefore, inversely proportional to 
the thickness and the concentration:

	 T = e–elc	 (3)

According to this law, in the transmission mode image, 
the pixel values of the red blood cells are lower than 
the pixel values of the background image (Figure 1) and, 
therefore, lower than the average pixels values.

Standardisation
Standardisation allows the reduction of data to have 
zero mean and a standard deviation of 1. The aim of 
this process is to overcome the sensitivity of the data to 
overly large dispersions, while maintaining the shape of 
joint distributions.

Let xj be the grey level of the pixel in a given image, the 
standardised grey level is
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Normalisation
With the same intent as standardisation, normalisation 
allows scaling data in [0,1].

Let xmin and xmax be, respectively, the minimum and the 
maximum values of the pixels’ grey level in a given image. 
A given grey level xj is normalised as
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Applying the standardisation equation on Figure 1 
gives the result in Figure 2.

The image contrast is then enhanced and the blood 
cells can be clearly distinguished from the background. 
However, the background illumination is not homoge-
neous.

In the following, the proposed automatic images anal-
ysis method is performed through a customised algo-
rithm written in R software v. 3.5.3.

Adaptive thresholding
Unlike global thresholding, the adaptive one allows 
the threshold to be different depending on the region 
of the image.24 Therefore, spatial dependencies of the 
background signal due to spurious signals or uneven 
illumination can be anticipated. The value of pixel 
intensity is determined from the local neighbourhood. 
We obtain a new smoothed image after applying an 
adaptive thresholding procedure to all pixels. The 
thresholding is performed by comparing each pixel’s 
intensity with a smoothed background image. For the 
smoothing, we used the filter2 function of the image 
processing package EBImage24 of the R language. This 
function uses a 2D Fast Fourier Transform which is 
a convolution product equivalent to the following 
equation:

( )( ) ( ) ( ) ,  , ,
s t

w f x y w s t f x s y s
+¥ +¥

=-¥ =-¥

´ = + +å å

where w is a weighting function whose value is highest 
in the middle of the window (s = t = 0) and decreases at 
the border.

Hysteresis contour closing
The adaptive thresholding algorithm allows the 
red blood cells contours to be detected. However, 

Figure 2. Standardised image of Figure 1.

https://www.statisticshowto.com/mean/
https://www.statisticshowto.com/probability-and-statistics/standard-deviation/
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some of these contours are not closed. Hysteresis 
contour closing is performed to obtain the complete 
blood cells’ boundaries. It consists of detecting the 
extreme points of the unclosed contours and their 
extension.

Two different thresholds are used on I, which is a grey-
scale image. A high threshold T1 and a low threshold T2 
such that:

T1 > T2, min(I) ≤ T1 and T2 ≤ max(I)

Let S1 and S2 be two sets (binary mask images) such as:

S1 = {x ∈ ℝn/I(x) ≥ T1}, 
S2 = {x ∈ ℝn/I(x) ≥ T2}.

This amounts to finding C where S1 ⊂ C ⊂ S2. C is the 
binary image representing the contours, equal to 1 for 
pixels such as |∇I(x)| ≥ T1 and 0 elsewhere.25 As far as we 
are concerned, the set S1 is our standardised, normalised 
and segmented image with threshold 0, corresponding to 
the value for which Equation (4) is zero. The set S2 is the 
result of a convolution of the image obtained in S1 by 
the magnitude gradient of the Frei–Chen algorithm26,27 
defined by:

2 2
x y= +M D D ,

where
1 0 1

1 2 0 2
2 2 1 0 1

x
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2 2
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Performance assessment
The effectiveness of the proposed approach was meas-
ured using different parameters such as TP, True Positive, 
FP, False Positive, and FN, False Negative, to evaluate 
the performance indices which are: Precision, Recall, 
Accuracy and F-Measurement. In addition, we use a 
parameter DR, Detection Rate, which is the coverage 
rate of the manually counted cells. A comparision 
measure, namely, the positive agreement (Ppos), an alter-
native to the well-known kappa index, is also computed 
to compare the manual method to automatic methods. 

These indices are calculated according to the following 
equations:

11

.1 1.
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where TP  = AC  – FP, FP  = CES  + FD, FN  = ME  + CelDel, 
P.1 = P21 + P11, P1. = P11 + P12 and P11 = Min(Rate A, Rate B).

12

  –   if     
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P22 = 1 – Max(Rate A, Rate B), Ppos is the index of posi-
tive agreement between two cell counting methods 
(Rate A and Rate B), CelDel is the number of cells 
deleted by segmentation, CES is the counting error 
due to cell segmentation, FD is the out-of-cell 
detection, FN is the number of cells omitted from 
the automatic counting, ME is the merging error 
(counting error due to overlapping cells), MC is the 
number of cells manually counted, AC is the number 
of cells automatically counted and CE is the counting 
error:

100 MC ACEC
MC
-

= ´
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Results and discussions
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where  TP = AC – FP,  FP = CES + FD,  FN = ME + CelDel,  P.1 = P21 + P11,  P1. = P11 + P12  and 
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P22 = 1 – Max(Rate  A,  Rate  B),  Ppos  is  the  index  of  positive  agreement  between  two  cell 
counting methods (Rate A and Rate B), CelDel is the number of cells deleted by segmentation, 
CES is the counting error due to cell segmentation, FD is the out‐of‐cell detection, FN is the 
number of cells omitted from the automatic counting, ME is the merging error (counting error 
due to overlapping cells), MC is the number of cells manually counted, AC is the number of 
cells automatically counted and 
CE is the counting error: [P] 
 Results and discussions 
Algorithm 

 
Segmentation and counting process 
The proposed segmentation approach used in this work can be divided in three basic steps. 
Figure  3  summarizes  these  steps.  Figure  3‐a  is  the original  sample  image  from which  the 
processing starts. It’s a low contrast image where the blood cells are not clearly identified. 

Standardisation 

Normalisation 

Adaptive Thresholding 

Edge closure 

Watershed 

Counting 

Segmentation and counting process
The proposed segmentation approach used in this 
work can be divided into three basic steps, which are 

summarised in Figure 3. Figure 3a is the original sample 
image from which the processing starts. It is a low 
contrast image where the blood cells are not clearly 
identified.
	�The first step consists of standardisation (Figure 2) and 
normalisation.
	� Step 2 realises an adaptive thresholding which aims to 
separate the erythrocytes from the background (Figure 
3b).
	� In step 3, the inhomogeneity of segmented cells is 
overcome by post-treatment which consists of contour 
closing by hysteresis and cell filling (Figure 3c). The 
watershed algorithm is thus performed to isolate the 
red blood cells. This leads to the counting process 
(Figure 3d).
Figure 3 reflects the whole process using LED light at a 

wavelength of 435 nm in transmission mode.

Figure 3. Segmentation process illustrated with a 435 nm image; (a) sample image, (b) adaptive thresholding, (c) post-
processing and (d) counting.
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Geometry selection
As indicated previously, the image used in this work is 
acquired thanks to three modalities and 13 wavelengths 
ranging from 370 nm to 940 nm. This section aims to 
explore both geometries and wavelengths, using the 
proposed methodology, to determine the best erythro-
cyte contrast over the background to achieve suitable 
segmentation. Figure 4 shows images acquired in trans-
mission mode using wavelengths of 435 nm, 525 nm, 
590 nm and 700 nm. The choice of these wavelengths 
reflects the main absorption peaks of heme and their 
potential for best contrast.

The original sample images were segmented using 
adaptive segmentation applied to Figure 2 followed by 
normalisation.

In each image (Figure 4), we observe a black back-
ground which corresponds to both glass slide and the 

plasma contribution; the cells with higher pixel intensities 
correspond to the erythrocytes. The contrast is obtained 
from the variability of hemoglobin concentration, the 
absorbancies and the relative thicknesses of the plasma 
and erythrocytes. Contrast variation from one wave-
length image to another is due to absorptivity.

In Figure 5, the mode is switched to reflection, while 
maintanining both region of interest (ROI) and wave-
length at the same value. Figure 5a is the image with 
435 nm, which represents the highest absorption peak 
for hemoglobin and gives the highest contrast of the 
blood smear images. For reflection, the contrast derives 
from the relative reflection coefficients between the 
background and the erythrocytes which are composed 
predominantly of hemoglobin.

By comparison, the segmentation with transmis-
sion images leads to higher contrast and reveals more 

Figure 4. Adaptive thresholding in transmission according to wavelengths: (a) image at 435 nm, (b) image at 525 nm, (c) 
image at 590 nm and (d) image at 700 nm.
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d

a

c
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clearly erythrocyte edges, while resulting in simple 
post-processing by the cell filling algorithm, edge 
closing algorithm and watershed closing algorithm. 
The cells’ isolation and counting processing is thus 
shortened. Transmission mode provides the best 
results. The system is then switched to the scattering 
mode for above-mentioned ROI and wavelengths 
(Figure 6).

Automatic counting results from the proposed segmen-
tation approach applied to the 13 wavelengths in the scat-
tering, reflection and transmission modes are presented 
in Table 1. The examined ROI contains 225 erythrocytes 
according to a manual count.

The automatic counting deviation from the manual one 
is estimated as 8.58 %, 43.59 % and 77.88 % in transmis-
sion, reflection and scattering modes, respectively. These 

findings lead to the selection of the transmission mode, 
which is compatible with the Beer–Lambert’s law equa-
tion.

By comparing the counting accuracy of all wavelengths 
in transmission mode, the best result is obtained with 
435 nm, which is associated with an automatic counting 
error of 1.98 % and an accuracy of 98 %. Furthermore, 
the images at 525 nm, 590 nm, 625 nm, 660 nm, 700 nm, 
750 nm and 810 nm also introduce smaller automatic 
counting errors (less than 10 %) and an accuracy higher 
than 90 %, as shown in Table 2. Also, all these wave-
lengths detect 100 % of the cells.

Results on non-pretreated images
Here we describe the results of our method on images 
acquired from the unstained blood smear without the 

Figure 5. Adaptive thresholding in reflection according to wavelengths: (a) image at 435 nm, (b) image at 525 nm, (c) image 
at 590 nm and (d) image at 700 nm.
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normalisation pre-processing step which requires the 
acquisition of dark and bright reference images [Equation 
(2)]. As illustration is given with the 435 nm wavelength 
image, see Figure 3a.

By applying the standardisation Equation 4, we get 
negative values for the red blood cell pixels, due to Beer–
Lambert’s law [Equation (3)]. This is consistent with the 
inverted standardised image as depicted in Figure 7.

All the cells are effectively identified. As stated above, 
the counting effectiveness depends on the cell isolation 
algorithm.

Adaptive thresholding is used to isolate red blood 
cells. However, depending on the wavelength, some 
features (contour details) can clearly be seen and others 
not. In this way, the blood cells uncorrectly segmented 
are removed.

All cells are detected by the combination of several 
wavelengths. We can obtain and improve this result by 
using a proposed hysteresis contour closing algorithm 
applied to a single image (one of these wavelengths) as 
shown in Figures 3c and 3d.

Result with pre-processed image
Applying the standardisation equation to the pre-
processed image produces a different result. In fact, 
only the contours are shown in Figure 8a. This is due 
to the pre-processing algorithm used for the image 
smoothing. Because of the concave shape of the red 
blood cells, the effect of Beer–Lambert’s law in trans-
mission [Equation (3)] is accentuated on the contours 
which are thick and less affected by the smoothing 

Figure 6. Adaptive thresholding in scattering according to wavelengths: (a) image at 435 nm, (b) image at 525 nm, (c) image 
at 590 nm and (d) image at 700 nm.
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algorithm. However, the cells are segmented by 
closing the contours, as shown in Figure 8.

Discussion
In the summary Table 3, we compare the performance 
of the proposed automatic counting method with the 
manual one on 30 raw images. The proposed algorithm is 
applied to images with two different sizes. A first batch of 

7 samples of size 1020 × 768 and a second batch of 23 
images of size 2048 × 1088.

The thresholding algorithm reveals erythrocytes that 
can be overlapped or attached and cannot be isolated 
spatially by the isolation algorithm, which leads to 
counting error. However, the result can be improved by 
considering the magnification parameter of the acquisi-
tion system in order to define the relative size of the 
erythrocyte.

As shown in Table 3, the acquisition time is one-third 
of that of the method previously used in our laboratory. 

Scattering Reflection Transmission
Wavelength (nm) AC Error rate (%) AC Error rate (%) AC Error rate (%)

375 34 84.89 80 64.44 160 28.89
400 25 88.89 182 19.11 196 12.89
435 28 87.56 216 4.00 221 1.78
470 154 31.56 165 26.67 200 11.11
525 18 92 110 51.11 225 0
590 48 78.67 203 9.78 224 0.44
625 49 78.22 110 51.11 217 3.56
660 33 85.33 80 64.44 227 0.89
700 58 74.22 150 33.33 211 6.22
750 98 56.44 109 51.56 227 0.89
810 44 80.44 130 42.22 211 6.22
850 29 87.11 65 71.11 190 15.56
940 29 87.11 50 77.78 173 23.11

Average 49.8 77.88 126.92 43.59 206.31 8.58

Table 1. Geometry comparison.

AC Error rate(%) Accuracy (%)

160 28.89 82.47

196 12.89 90.74
221 1.98 98.22
200 11.11 90.91
225 0.00 90.68
224 0.44 96.89
217 3.56 94.71
227 0.89 81.60
211 6.22 94.95
227 0.89 93.91
211 6.22 97.22
190 15.56 94.97
173 23.11 89.58

206.31 8.58 92.07

Table 2. Wavelength comparison in transmission mode.

Figure 7. Standardised and inverted image of Figure 2.
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Second, we capitalise on the execution time of the 
normalisation and pre-processing algorithms that are 
usually performed.11,19,21,26–28 Finally, the speed average 
is 30 s for 1020 × 768 size images and less than 2 min 
for 2048 × 1088 size images. This meets the demands of 
real-time processing.

The numerical results show also the detection rates of 
100 % for the first batch and 99.65 % for the second, with 
an average of 99.82 %, indicating the capacity that can be 
obtained if the isolation and counting post-processing is 
improved.

Figure 9 gives a determination coefficient R2 of 0.9998 
(when performing a simple linear regression) which 
shows the closeness between the automatic and manual 
counting methods. We also obtained an error rate of 
1.6 % (Table 3) and root-mean-square error (RMSE) of 

5.86 (Table 4). These results show a clear improvement 
over those of Bagui et al.13

Our method was compared with those of five other 
studies which reported on the segmentation and counting 
of red blood cells.31

Analysis of Table 5 gives us an accuracy of 96.8 %, 
which is not as good as Loddo.32 This is due to inad-
equacy of our cell isolation algorithm, which could be 
improved by considering the magnification features 
of the acquisition system in order to parameterise the 
relative size of the erythrocyte. However, we have a 
better result for precision, 98.5 %, and Recall, 98.2 %. 
We obtained a degree of precision (F-Measurement) 
of 98.3 %, which is a key indicator of performance 
for a diagnostic test. The positive agreement index 
of 0.99 shows the high agreement33–36 level of the 

Figure 8. Pre-processed image segmentation; (a) image at 435 nm after normalisation and filtering, (b) image after adaptive 
thresholding and (c) counting.

b

c

a
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Image 
no. MC AC NOC CES FD ET (s)

DR 
(%)

CE 
(%) Precision Recall Accuracy F-measure Ppos

1 225 221 5(12) 1 0 26.34 100 1.77 99.55 96.92 96.49 98.21 0.99

2 150 156 7(14) 1 0 22.06 100 4.00 99.36 95.54 95.09 97.48 1.00

3 149 150 5(10) 2 3 33.59 100 0.67 96.67 96.67 93.55 96.67 0.99

4 204 200 5(10) 1 0 26.38 100 1.96 99.50 97.55 97.07 98.51 0.99

5 262 257 5(10) 0 0 15.11 100 1.90 100 98.09 98.09 99.04 0.99

6 119 120 3(6) 2 0 44.78 100 0.84 98.33 97.52 95.93 97.93 1.00

7 119 121 3(6) 3 0 48.34 100 1.68 97.52 97.52 95.16 97.52 1.00

Partial average 1 30.94 100 1.89 98.70 97.12 95.91 97.91 0.99

8 1045 1017 20(44) 0 0 234.27 99.61 2.68 100 97.31 97.31 98.64 0.99

9 139 139 1(4) 4 0 101.76 99.28 0.00 97.12 97.12 94.41 97.12 0.99

10 155 160 0 3 0 136 99.37 3.23 98.13 99.38 97.53 98.75 1.00

11 178 177 0 3 0 124.18 100 0.56 98.31 100 98.31 99.15 0.99

12 182 182 1(2) 2 0 102.92 100 0.00 98.90 99.45 98.36 99.17 0.99

13 171 171 0 0 0 76.7 100 0.00 100 100 100 100 1.00

14 183 181 0 4 0 86.09 100 1.09 97.79 100 97.79 98.88 0.98

15 185 189 0 4 0 68.93 100 2.16 97.88 100 97.88 98.93 1.00

16 181 183 0 4 0 93.22 98.87 1.10 97.81 98.87 96.73 98.34 0.99

17 172 175 0 4 0 90.41 99.41 1.74 97.71 99.41 97.15 98.55 1.00

18 164 163 0 3 0 107.81 99.39 0.61 98.16 99.38 97.56 98.77 0.99

19 153 156 0 5 0 114.72 100 1.96 96.79 100 96.79 98.37 0.99

20 175 177 0 3 0 133.12 98.28 1.14 98.31 98.30 96.66 98.30 1.00

21 180 185 0 5 0 114.62 100 2.78 97.30 100 97.30 98.63 1.00

22 182 183 0 2 0 108.53 99.45 0.55 98.91 99.45 98.37 99.18 1.00

23 156 159 0 3 0 94.83 100 1.92 98.11 100 98.11 99.05 1.00

24 165 165 0 0 0 89.73 100 0.00 100.00 100 100 100 1.00

25 159 162 0 3 0 84.06 100 1.89 98.15 100 98.15 99.07 1.00

26 160 161 1(2) 3 0 87 99.37 0.63 98.14 98.75 96.93 98.44 0.99

27 164 166 0 3 0 83 100 1.22 98.19 100 98.19 99.09 1.00

28 175 177 1(3) 5 0 105.55 99.42 1.14 97.18 98.28 95.55 97.72 0.99

29 174 177 1(2) 3 0 90.94 100 1.72 98.31 99.43 97.75 98.86 1.00

30 181 185 0 3 0 95.89 99.42 2.21 98.38 99.43 97.82 98.90 1.00

Partial average 2 105.40 99.65 1.32 98.24 99.33 97.59 98.78 1.00

Total average   99.82 1.60 98.47 98.23 96.75 98.34 0.99

MC: number of cells manually counted; AC: number of cells automatically counted; NOC: Number of overlapping cells; CES: Counting error due 
to cell segmentation; FP: False positive; the number of cells which should not be included in the counting; ET (s): Execution Time in seconds; 
DR: Detection rate; the manual counting cells coverage rate;  
 CE: Counting error; 100 MC CAEC

MC
-

= ´ ; 

Partial average 1: 1020 × 768 size images average; Partial average 2: 2048 × 1088 size images average; Total average: average of all 30 images; 
RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error; R2 adjust: determination coefficient

Table 3. Counting synthesis table.
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proposed method with manual counting compared to 
others.

Conclusion and perspectives
In this study, a method was introduced for detection and 
counting of RBCs from spectral images without using 

reference images. By using this approach, the time saved 
can be critical in an emergency situation and when the 
peak demand of the test is highest: each extra batch of 
13 images will add 2.6 min of acquisition time and about 
the same for pretreatment. Moreover, the novel algorithm 
runs in less than 2 min for large images (2048 × 1088 px).

Evaluation of the performance of the proposed approach 
results in a Precision of 98.47 % and Recall of 98.23 %, 
which gives a degree of precision (F-Measurement) of 
98.34 % and Accuracy of 96.75 %. These results show 
that the proposed method is efficient and can lead to 
real-time diagnosis.

In perspective, we plan to improve the counting rate 
by merging over-segmented cells and disconnecting the 
ones that are overlapping.

y = 0.9659x + 7.0572
R² = 0.9998

0

200

400
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1000

1200

0 500 1000 1500

Linear interpolation automatic counting
vs manual counting  

x = Manual Counting

y = Automatic counting

Figure 9. Automatic counting vs manual counting.

Performance indicator Value
RMSE 5.86
MAE 3.03
MAPE % 1.30

R2 adjust 0.9998

Table 4. Performance indicator.

Alomari 
et al.37 Loddo et al.32 Moallem et al.18 Poostchi et al.19 Cecilia et al.31 Our approach

Images type Stained 
thin blood 
smears RGB 
colour images 
from Dhruv 
Pathology 
Lab

Stained thin 
blood smears 
JPG 24-bit 
colour depth 
(2592 × 1944) 
images from 
ALL-IDB 
dataset (Canon 
Powershot G5 
camera)

Stained thin 
blood smears 
RGB colour 
images from 
regular light 
microscope by 
smartphone

Stained thin 
blood smears 
RGB colour 
images acquired 
by a Zeiss Axio 
imager

Stained thin 
blood smears 
JPG 24-bit 
colour depth 
(2592 × 1944) 
images from 
ALL-IDB 
and MP-IDB 
dataset (Canon 
Powershot G5 
camera)

Unstained blood 
smears greyscale 
12-bit depth images 
acquired by a 5 Mpx 
(2592 × 1944) 
monochromatic 
CMOS camera

Methods 
used

Iterarative 
structured 
circle detec-
tion algorithm

Nearest 
neighbour and 
support vector 
machine

Adaptative 
meanshift cluster-
ing and snake 
algorithm

Laplacien of 
Gaussian filter 
and Geodesic 
active contour

Modified edge 
boxes

Standisation, adap-
tive thresholding 
and the watershed 
algorithm

Accuracy 95.3 98 92.5 95.6 96.8

Precision 95 89 98 99.3 98.4 98.5

Recall 98 98 93 90.3 95 98.2

F-Measure 96 93 95 94.5 96.6 98.3

Ppos 98.99 98.99 96.37 94.90 97.44 99.09

Table 5. Blood cells counting performance compared with the state-of-the-art.



14	 Detection and Segmentation of Erythrocytes in Multispectral Label-Free Blood Smear Images

References
1.	 Paludisme. https://www.who.int/fr/news-room/fact-

sheets/detail/malaria [Accessed: 5 November 2019].
2.	 WHO | World Malaria Report 2019. WHO. http://

www.who.int/malaria/publications/world-malaria-
report-2019/en/ [Accessed: 30 July 2020].

3.	 M. Poostchi, K. Silamut, R.J. Maude, S. Jaeger and 
G. Thoma, “Image analysis and machine learning 
for detecting malaria”, Transl. Res. 194, 36 (2018). 
https://doi.org/10.1016/j.trsl.2017.12.004

4.	 S.S. Savkare and S.P. Narote, “Automated system for 
malaria parasite identification”, in 2015 International 
Conference on Communication, Information Computing 
Technology (ICCICT), pp. 1–4 (2015). https://doi.
org/10.1109/ICCICT.2015.7045660

5.	 S.S. Devi, S.A. Sheikh, A. Talukdar and R.H. Laskar, 
“Malaria infected erythrocyte classification based 
on the histogram features using microscopic images 
of thin blood smear”, Indian J. Sci. Technol. 9(45), 
1–10 (2016). https://doi.org/10.17485/ijst/2016/
v9i45/94119

6.	 S.S. Devi, R.H. Laskar and S.A. Sheikh, “Hybrid 
classifier based life cycle stages analysis for malaria-
infected erythrocyte using thin blood smear images”, 
Neural Comput. Appl. 29(8), 217 (2018). https://doi.
org/10.1007/s00521-017-2937-4

7.	 G.P. Gopakumar, M. Swetha, G. Sai Siva and G.R.K. 
Sai Subrahmanyam, “Convolutional neural network-
based malaria diagnosis from focus stack of blood 
smear images acquired using custom-built slide 
scanner”, J. Biophotonics 11(3), e201700003 (2018). 
https://doi.org/10.1002/jbio.201700003

8.	 N. Otsu, “A threshold selection method from 
gray-level histograms”, IEEE Trans. Syst. Man 
Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/
TSMC.1979.4310076

9.	 J.-D. Kim, K.-M. Nam, C.-Y. Park, Y.-S. Kim and H.-J. 
Song, “Automatic detection of malaria parasite in 
blood images using two parameters”, Technol. Health 
Care Off. J. Eur. Soc. Eng. Med. 24 Suppl 1, S33 
(2015). https://doi.org/10.3233/THC-151049

10.	S. Derivaux, S. Lefevre, C. Wemmert and J. Korczak, 
“Segmentation par ligne de partage des eaux basée 
sur des connaissances texturales”. https://icube-
publis.unistra.fr/5-DLWK07 [Accessed: 6 February 
2020].

11.	A. Nanoti, S. Jain, C. Gupta and G. Vyas, “Detection 
of malaria parasite species and life cycle stages using 
microscopic images of thin blood smear”, in 2016 
International Conference on Inventive Computation 
Technologies (ICICT) 1, 1–6 (2016). https://doi.
org/10.1109/INVENTIVE.2016.7823258

12.	J.T. Zoueu, S. Ouattara, A. Toure, S. Safi and S.T. Zan, 
“Spectroscopic approach of multispectral imaging 
of Plasmodium falciparum-infected human eryth-
rocytes”, in 2009 3rd ICTON Mediterranean Winter 
Conference (ICTON-MW), pp. 1–7 (2009). https://doi.
org/10.1109/ICTONMW.2009.5385598

13.	O.K. Bagui and J.T. Zoueu, “Red blood cells count-
ing by circular Hough transform using multispectral 
images”, J. Appl. Sci. 14, 3591–3594 (2014). https://
doi.org/10.3923/jas.2014.3591.3594

14.	Z. Zhang, L.L.S. Ong, K. Fang, A. Matthew, J. 
Dauwels, M. Dao and H. Asada, “Image classification 
of unlabeled malaria parasites in red blood cells”, in 
2016 38th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC), 
pp. 3981–3984 (2016). https://doi.org/10.1109/
EMBC.2016.7591599

15.	H. Maitre, Survey on Hough Transform (1985). http://
hdl.handle.net/2042/2334

16.	D. Bibin, M.S. Nair and P. Punitha, “Malaria 
parasite detection from peripheral blood smear 
images using deep belief networks”, IEEE Access 
5, 9099–9108 (2017). https://doi.org/10.1109/
ACCESS.2017.2705642

17.	D.K. Das, A.K. Maiti and C. Chakraborty, 
“Automated system for characterization and clas-
sification of malaria-infected stages using light 
microscopic images of thin blood smears”, J. Microsc. 
257(3), 238 (2015). https://doi.org/10.1111/
jmi.12206

18.	G. Moallem, H. Sari-Sarraf, M. Poostchi, R.J. Maude, 
K. Silamut, M.A. Hossain, S. Antani, S. Jaeger and 
G. Thoma, “Detecting and segmenting overlap-
ping red blood cells in microscopic images of thin 
blood smears”, in Medical Imaging 2018: Digital 
Pathology 10581, 105811F (2018). https://doi.
org/10.1117/12.2293762

19.	M. Poostchi, I. Ersoy, K. McMenamin, E. Gordon, 
N. Palaniappan, S. Pierce, R.J. Maude, A. Bansal, P. 
Srinivasan, L. Miller, K. Palaniappan, G. Thoma and S. 
Jaeger, “Malaria parasite detection and cell count-
ing for human and mouse using thin blood smear 

https://www.who.int/fr/news-room/fact-sheets/detail/malaria
https://www.who.int/fr/news-room/fact-sheets/detail/malaria
http://www.who.int/malaria/publications/world-malaria-report-2019/en/
http://www.who.int/malaria/publications/world-malaria-report-2019/en/
http://www.who.int/malaria/publications/world-malaria-report-2019/en/
https://doi.org/10.1016/j.trsl.2017.12.004
https://doi.org/10.1109/ICCICT.2015.7045660
https://doi.org/10.1109/ICCICT.2015.7045660
https://doi.org/10.17485/ijst/2016/v9i45/94119
https://doi.org/10.17485/ijst/2016/v9i45/94119
https://doi.org/10.1007/s00521-017-2937-4
https://doi.org/10.1007/s00521-017-2937-4
https://doi.org/10.1002/jbio.201700003
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.3233/THC-151049
https://icube-publis.unistra.fr/5-DLWK07
https://icube-publis.unistra.fr/5-DLWK07
https://doi.org/10.1109/INVENTIVE.2016.7823258
https://doi.org/10.1109/INVENTIVE.2016.7823258
https://doi.org/10.1109/ICTONMW.2009.5385598
https://doi.org/10.1109/ICTONMW.2009.5385598
https://doi.org/10.3923/jas.2014.3591.3594
https://doi.org/10.3923/jas.2014.3591.3594
https://doi.org/10.1109/EMBC.2016.7591599
https://doi.org/10.1109/EMBC.2016.7591599
http://hdl.handle.net/2042/2334
http://hdl.handle.net/2042/2334
https://doi.org/10.1109/ACCESS.2017.2705642
https://doi.org/10.1109/ACCESS.2017.2705642
https://doi.org/10.1111/jmi.12206
https://doi.org/10.1111/jmi.12206
https://doi.org/10.1117/12.2293762
https://doi.org/10.1117/12.2293762


S. Doumun, S. Dabo and J. Zoueu, J. Spectral Imaging 9, a10 (2020)	 15

microscopy”, J. Med. Imaging 5(4), 044506 (2018). 
https://doi.org/10.1117/1.JMI.5.4.044506

20.	J.T. Zoueu and S.T. Zan, “Trophozoite stage 
infected erythrocyte contents analysis by use 
of spectral imaging led microscope”, J. Microsc. 
245(1), 90 (2012). https://doi.org/10.1111/j.1365-
2818.2011.03548.x

21.	S. Dabo-Niang and J.T. Zoueu, “Combining kriging, 
multispectral and multimodal microscopy to resolve 
malaria-infected erythrocyte contents”, J. Microsc. 
247(3), 240 (2012). https://doi.org/10.1111/j.1365-
2818.2012.03637.x

22.	M. Brydegaard, A. Merdasa, H. Jayaweera, J. 
Ålebring and S. Svanberg, “Versatile multispectral 
microscope based on light emitting diodes”, Rev. 
Sci. Instrum. 82(12), 123106 (2011). https://doi.
org/10.1063/1.3660810

23.	A.J. Merdasa, M. Brydegaard, S. Svanberg and J.T. 
Zoueu, “Staining-free malaria diagnostics by mul-
tispectral and multimodality light-emitting-diode 
microscopy”, J. Biomed. Opt. 18(3), 036002 (2013). 
https://doi.org/10.1117/1.JBO.18.3.036002

24.	G. Pau, F. Fuchs, O. Sklyar, M. Boutros and W. 
Huber, “EBImage—an R package for image pro-
cessing with applications to cellular phenotypes”, 
Bioinformatics 26(7), 979 (2010). https://doi.
org/10.1093/bioinformatics/btq046

25.	M. Bergounioux, Introduction au Traitement 
Mathématique des Images - Méthodes Déterministes. 
Springer (2015). https://doi.org/10.1007/978-3-662-
46539-4

26.	D. Apdilah, M.Y. Simargolang and R. Rahim, “A study 
of Frei-Chen approach for edge detection”, Int. J. Sci. 
Res. Sci. Eng. Technol. IJSRSET 3(1), 59 (2017). https://
doi.org/10.5281/zenodo.239730

27.	M. Al-khassaweneh, “Robust and invisible water-
marking technique based on Frei-Chen bases”, 
in 2019 IEEE International Conference on Electro 
Information Technology (EIT), p. 1 (2019). https://doi.
org/10.1109/EIT.2019.8833875

28.	J.T. Zoueu and S. Zan, “Trophozoite stage infected 
erythrocyte contents analysis by use of spec-
tral imaging led microscope”, J. Microsc. 245(1), 

90 (2012). https://doi.org/10.1111/j.1365-
2818.2011.03548.x

29.	O.K. Bagui and J.T. Zoueu, “Automatic malaria diag-
nosis by the use of multispectral contrast imaging”, 
PCN J. 75, 86–98 (2015). https://www.pcnjournal.
com/157513_2053.htm

30.	O.K. Bagui, W. Yavo, D. Tano and J.T. Zoueu, “Etude 
de l’effet de l’amodiaquine sur les globules rouges 
infectés par le paludisme dans les images multispec-
trales”, Africa Sci. 10(4), (2014). http://www.afriques-
cience.info/document.php?id=3968

31.	C. Di Ruberto, A. Loddo and L. Putzu, “Detection 
of red and white blood cells from microscopic 
blood images using a region proposal approach”, 
Comput. Biol. Med. 116, 103530 (2020). https://doi.
org/10.1016/j.compbiomed.2019.103530

32.	A. Loddo, L. Putzu, C.D. Ruberto and G. Fenu, “A 
computer-aided system for differential count 
from peripheral blood cell images”, in 2016 12th 
International Conference on Signal-Image Technology 
Internet-Based Systems (SITIS), p. 112 (2016). https://
doi.org/10.1109/SITIS.2016.26

33.	M.L. McHugh, “Interrater reliability: the kappa sta-
tistic”, Biochem. Medica 22(3), 276 (2012). https://doi.
org/10.11613/BM.2012.031

34.	J.R. Landis and G.G. Koch, “The measurement of 
observer agreement for categorical data”, Biometrics 
33(1), 159 (1977). https://doi.org/10.2307/2529310

35.	A.R. Feinstein and D.V. Cicchetti, “High agreement 
but low kappa: I. the problems of two paradoxes”, 
J. Clin. Epidemiol. 43(6), 543 (1990). https://doi.
org/10.1016/0895-4356(90)90158-L

36.	D.V. Cicchetti and A.R. Feinstein, “High agree-
ment but low kappa: II. resolving the paradoxes”, 
J. Clin. Epidemiol. 43(6), 551 (1990). https://doi.
org/10.1016/0895-4356(90)90159-M

37.	Y.M. Alomari, S.N.H. Sheikh Abdullah, R. Zaharatul 
Azma and K. Omar, “Automatic detection and 
quantification of WBCs and RBCs using iterative 
structured circle detection algorithm”, Computational 
and Mathematical Methods in Medicine 2014, 979302 
(2014). https://doi.org/10.1155/2014/979302

https://doi.org/10.1117/1.JMI.5.4.044506
https://doi.org/10.1111/j.1365-2818.2011.03548.x
https://doi.org/10.1111/j.1365-2818.2011.03548.x
https://doi.org/10.1111/j.1365-2818.2012.03637.x
https://doi.org/10.1111/j.1365-2818.2012.03637.x
https://doi.org/10.1063/1.3660810
https://doi.org/10.1063/1.3660810
https://doi.org/10.1117/1.JBO.18.3.036002
https://doi.org/10.1093/bioinformatics/btq046
https://doi.org/10.1093/bioinformatics/btq046
https://doi.org/10.1007/978-3-662-46539-4
https://doi.org/10.1007/978-3-662-46539-4
https://doi.org/10.5281/zenodo.239730
https://doi.org/10.5281/zenodo.239730
https://doi.org/10.1109/EIT.2019.8833875
https://doi.org/10.1109/EIT.2019.8833875
https://doi.org/10.1111/j.1365-2818.2011.03548.x
https://doi.org/10.1111/j.1365-2818.2011.03548.x
https://www.pcnjournal.com/157513_2053.htm
https://www.pcnjournal.com/157513_2053.htm
http://www.afriquescience.info/document.php?id=3968
http://www.afriquescience.info/document.php?id=3968
https://doi.org/10.1016/j.compbiomed.2019.103530
https://doi.org/10.1016/j.compbiomed.2019.103530
https://doi.org/10.1109/SITIS.2016.26
https://doi.org/10.1109/SITIS.2016.26
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.2307/2529310
https://doi.org/10.1016/0895-4356(90)90158-L
https://doi.org/10.1016/0895-4356(90)90158-L
https://doi.org/10.1016/0895-4356(90)90159-M
https://doi.org/10.1016/0895-4356(90)90159-M
https://doi.org/10.1155/2014/979302

