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Applications of hyperspectral imaging (HSI) to the quantitative and qualitative measurement of samples have grown widely in recent years, due 

mainly to the improved performance and lower cost of imaging spectroscopy instrumentation. Data sampling is a crucial yet often overlooked step 

in hyperspectral image analysis, which impacts the subsequent results and their interpretation. In the selection of pixel spectra for the calibration 

of classification models, the spatial information in HSI data can be exploited. In this paper, a variety of sampling strategies for selection of pixel 

spectra are presented, exemplified through five case studies. The strategies are compared in terms of the proportion of global variability captured, 

practicality and predictive model performance. The use of variographic analysis as a guide to the spatial segmentation prior to sampling leads to 

the selection of representative subsets while reducing the variation in model performance parameters over repeated random selection.

Keywords: hyperspectral imaging, data sampling, classification, spatial, variographic analysis

Introduction
A key step in the successful implementation of hyper-
spectral imaging (HSI) applications is the development of 
robust calibration models. The HSI data cube, or “hyper-
cube”, is information rich, typically containing hundreds 
of thousands of spatially co-registered spectra. This 
abundance of data, while advantageous from a model-
ling perspective, is also challenging to deal with. On the 
one hand, in HSI we are rapidly presented with a large 

number of spectra with which to characterise samples; 
on the other, such a large volume of data is computa-
tionally burdensome and large portions of it may be 
redundant. A further challenge, in the development of 
calibration models from HSI data, is that reference or 
measured values for a property of interest are not usually 
available at a pixel level. In conventional spectroscopy, 
it is common to use a single bulk sample value, i.e. an 
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average value characterising a homogenous sample, 
matched to a single spectrum representing the entire 
sample. The direct translation of this approach in HSI 
would be to calculate a mean spectrum from the HSI 
data representing each sample for which a response (Y) 
was measured. This is the approach followed in many 
research works where the objective is to apply HSI for 
quantitative analysis. Examples include the prediction 
of oil concentration in corn kernels,1 quality prediction 
of strawberries,2 sugar content in apples,3 and quality of 
mushrooms.4 However, it is also possible to build predic-
tive models using multiple pixel spectra or multiple mean 
spectra, calculated from different regions of a hypercube, 
matched to a single Y value. In the case of discriminant 
analysis, the advantage of using multiple spectra, rather 
than a single spectrum for each image, is more obvious, 
in that it makes the spectral variation associated with 
each class implicit in the discriminant model which gener-
ally improves model robustness.

Representative subset selection is a common problem 
in large datasets. Daszaykowski et al.5 compared several 
uniform and cluster-based designs for the selection of 
representative spectra from databases of NIR spectra.5 
Uniform designs, such as the Kennard and Stone (KS) 
algorithm6 aim to cover the data space uniformly, while 
cluster-based designs involve an initial clustering of the 
data followed by representative subset selection. In 
terms of uniform selection methods, they found that 
the “OptiSim” algorithm, proposed by Clark,7 was more 
computationally efficient than KS, with a running time 
3–4 times faster than achieved with KS, while providing 
a similar distribution of selected spectra, as observed in 
principal components 1 vs 2 score plots. This method 
requires the input of several user-defined parameters 
including a threshold distance between dissimilar objects, 
the number of objects to be selected and the size of the 
subset. In terms of cluster-based designs, they observed 
that some small clusters risked being underrepresented 
when a small total number of clusters was selected. In 
order to avoid this risk, a higher total number of clusters 
could be used. This could be through minimising the 
k-means cost function or a preliminary density-based 
clustering step in the principal component score space 
can be carried out prior to the application of k-means 
within each cluster, although this would increase the 
computational burden.

In common with selection of spectra from traditional 
spectroscopic data, in order to optimally select spectra 

from HSI data for inclusion in a calibration model, it is 
necessary to select the minimum number of spectra 
that can be considered representative of a given object. 
The subset of selected spectra should represent all 
relevant sources of variability in the dataset. However, 
hyperspectral images obviously contain additional 
spatial information. Therefore, selection of spectra 
from hyperspectral images can be framed as a spatial 
sampling problem and thus concepts from the Theory 
of Sampling may be applied. For instance, applying 
variographic analysis to spatial data facilitates quan-
tisation of correlation between spatially congruent 
intensity values.8 This type of analysis could be useful 
in defining regions over an image from which spectra 
may be selected. Variogram analysis has previously 
been used in HSI, for the evaluation of maize plants.9 
It was shown that variogram parameters (nugget, sill 
and range) derived from single-band images could be 
used as explanatory variables for the prediction of 
spider mite infestation and drought stress. However, 
to the best of our knowledge, variographic analysis 
has not been used as a tool for selecting representa-
tive spectra from HSI data. The objective of this work 
is to investigate the effects of incorporating sample 
variation in the calibration model on robustness of 
calibration models. A variety of sampling strategies for 
selection of pixel spectra are presented, exemplified 
through a number of real and synthetic datasets. The 
strategies were compared in terms of:
1)	 the resultant representativeness of the selected 

spectra,
2)	resultant performance of classification models,
3)	computational time.

Materials and methods
Hyperspectral imaging instrumentation
Diffuse reflectance images of various samples 
(described below) were obtained using two pushbroom 
hyperspectral imaging systems (DV Optics Ltd, Padua, 
Italy): an NIR system (wavelength range 950–1650 nm, 
pixel size approximately 320 × 320 μm, described 
further in Reference 10) and a Vis-NIR system (wave-
length range 450–950 nm, pixel size approximately 
170 × 170 μm, described further in Reference 11). 
Direct reflectance spectra were used for subsequent 
data analysis.
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Data analysis
All data analysis was carried out using Matlab (release 
R2014b, The MathWorks, Inc., Natick, MA, USA) incorpo-
rating functions from the Image Processing and Statistics 
toolboxes and additional functions written in-house.

Spectral selection
Five different spectral sampling strategies were evalu-
ated, as described below. For each dataset, a separate 
image of each class was obtained, denoted the “class 
image”. Spectra were selected from the class image, 
and spectra selected from each class were combined in 
order to build a calibration set of data for modelling. For 
each of the selection methods involving random selec-
tion (i.e. Strategies 1, 3, 4 and 5 described below), the 
procedure of selection was repeated 100 times. In order 
to have a fair comparison of the methods, the desired 
number of spectra to select from each class was defined 
by the regular grid method (Strategy 4), as follows. The 
grid method subsets the class image into an N × N grid, 
one spectrum is selected from each rectangle of the 
grid. The total number selected is counted (this is the 
desired number of spectra to select) and the percentage 
of pixels that this corresponds to is calculated. For strat-
egies 3 and 5, the percentage is used to define the 
number of pixels selected from each cluster or vario-
gram-based rectangle of the grid. In instances where 
the percentage was not an integer, the number was 
rounded up to the nearest integer using the “ceil” func-
tion in Matlab.

Strategy 1: Random selection. This, the simplest and 
most commonly used strategy, involved unfolding the 
non-background spectra of the class image, randomly 
permuting the order of the spectra (using the randperm.m 
function in Matlab) and subsequently selecting the 
desired number of spectra from the permuted list.

Strategy 2: Kennard and Stone selection. This strategy 
involved applying the Kennard and Stone algorithm (KS)6 
to select a desired number of the spectral points that 
optimally span the spectral variation in the dataset. It can 
be summarised in the following steps:
(i)	 the first selected spectrum is that nearest the mean 

spectrum,
(ii)	 the next selected spectrum is that furthest from (i),
(iii)	the next selected spectrum is that which is furthest 

from (i) and (ii) and
(iv)	the procedure is continued until the desired number 

of spectra are selected.

Strategy 3: Spectrally stratified random selection. This 
strategy involves applying a clustering algorithm (k-means 
in this case) to the data to initially estimate the number of 
clusters in the class image. As a measure of how similar 
an object is to its own cluster (cohesion) compared to 
other clusters (separation), silhouette values range from 

−1 to +1, where a high value indicates that the object is 
well matched to its own cluster and far away from the 
neighbouring clusters. The mean silhouette value of each 
individual class image is computed for 2–5 clusters and 
the optimal number of clusters is determined with the 
maximum mean silhouette. Following selection of the 
number of clusters, the desired number of spectra were 
randomly selected from each cluster.

Strategy 4: Spatially stratified random selection: user-
defined rectangular grids. This strategy employs spatial 
information by subsetting the class image into an N × N 
grid, where N ranged from 5 to 10. The horizontal and 
vertical sizes of the grid rectangles were estimated as the 
lowest nearest integer to the image dimensions divided 
by N. From each rectangle of the grid, one pixel spec-
trum is randomly selected. For any given value of N for 
any class image, the total number of spectra selected 
using the grid method was set as the desired number of 
spectra in strategies 1, 2, 3 and 5.

Strategy 5: Spatially stratified random selection: 
variogram-defined rectangular grids. This method is 
similar to Strategy 4, except the size of the grid rectangles 
is estimated using a variographic approach, as follows. 
The North–South and East–West directional semi-vari-
ogram (defined in Equations 1 and 2, respectively) of 
the mean hyperspectral image is calculated, and the 
lag distance at which the semi-variogram intersects the 
global variance of the image is selected as the grid size. 
In cases there was no intersection, or where the intersec-
tion point occurred at a distance greater than half of the 
domain size the grid size was set to half of the domain 
size.

North–South (vertical):	  
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East–West (horizontal):	  
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where γ is the semi-variance and M is the total number of 
pairs at a distance of h, while G(x, y) is the pixel intensity 
of image at (x, y).
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Comparison of sampling techniques
Each sampling strategy was compared in terms of 
representativeness, time required (using an Intel® 
Core™ i5-7600 CPU @ 3.50GHz; x64-based processor, 
8 GB RAM) and resultant classification performance. 
Representativeness of selected spectra was estimated 
using the RMS (root mean squared) statistic.12 The RMS 
statistic for each selected spectrum is defined in Equation 
3, where yij is the spectrum of the jth sample, iy  is the 
mean spectrum of n selected spectra of an image and n 
refers to the number of wavelengths.
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Partial least squares discriminant analysis (PLSDA)13 
was used to build models to classify the samples in each 
dataset. A calibration set of data was generated using 
each of the sampling strategies, where each spectrum 
was assigned a class number depending on which class 
it represented. This resulted in, for each example dataset, 
five calibration sets (i.e. one for each sampling method). 
The number of latent variables for each model was fixed 
at eight for each dataset, to prevent variations in model 
performance arising from variations in the number of 
latent variables. A single common test set was created 
from the remaining spectra that were not used in any 
of the calibration sets, to enable comparison of model 
performance. In addition, a prediction image containing 
a mixture of all classes was used for model evaluation. 
For each of strategies 1, 3, 4 and 5, the model resulting 
in a classification performance closest to the mean (out 
of the 100 randomised runs for grid N = 10) was selected 
and applied to the mixture image. Model performance 
was evaluated by % correct classification (% CC) and 
geometric mean (G-mean) metrics. G-mean indicates 
the balance between classification performances on the 
majority and minority classes by taking into considera-
tion both sensitivity (accuracy of the positive object) and 
specificity (accuracy on the negative object).

Datasets
In this study, five datasets were used to compare the 
performance of different spectral selection methodolo-
gies in terms of representative spectral subset selec-
tion and classification model performance. These data-
sets are described in detail below and representative 
colour images of them are shown in Figure 1. Mean 
spectra of all samples were displayed in Figure S1 (see 

Supplementary Material). For each dataset, a classifica-
tion model was built on the selected spectra to classify 
pixels in the dataset.

Dataset 1: Nuts and dried fruit
Hyperspectral images of a mixture of dried fruit and nuts 
were obtained using the Vis-NIR hyperspectral imaging 
system. Images of one individual nut or fruit sample 
were used for model calibration and the model was 
tested using an image containing each type of sample. 
The samples were placed on a black piece of sandpaper 
for imaging. The background was removed from each 
image by thresholding. Due to the varying colours of 
the samples with respect to the background, different 
strategies were used to maximise the contrast between 
the sample and background. For background removal of 
the almond sample, the ratio of images at 825 nm and 
495 nm was thresholded by setting all pixels >4 to 1 and 
the remaining pixels to 0. The peanut was separated 
from the background by applying principal components 
analysis (PCA) to the image and setting to 1 all pixels in 
the PC 2 score image that were less than zero. For the 
remaining samples, PCA was applied and all pixels in the 
PC 1 score image that were less than zero were set to 
1. The “imfill” function of the Matlab image processing 
toolbox was used to fill any non-background regions that 
remained after thresholding.

Dataset 2: Packaging materials
NIR hyperspectral images of five different packaging 
materials: high density polyethylene (HDPE), polystyrene 
(PS), polypropylene (PP), cardboard and polyethylene-
terephthalate (PET). Single images of each material were 
obtained as well as a mixed image including all materials. 
In the mixed image, the materials were cut into different 
shapes to enable their identification, as described in the 
caption of Figure 1. The materials were placed on a white 
tile for imaging. The image background was removed by 
thresholding. Again, due to the varying spectral charac-
teristics of the samples, it was necessary to find different 
strategies for background removal in each sample type. 
For the cardboard, HDPE and PS samples a band ratio 
image of 1321–1489 nm with a threshold of 1.04 was 
sufficient for background removal, while for PET samples, 
a ratio image of 1594–1650 nm with a threshold of 1.04 
provided good background removal. For the PP samples, 
the PC 1 scores image was thresholded with a value of 
0.1.
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Dataset 3: Sweets
This dataset consists of NIR hyperspectral images of 
four different sweets. The shape, colour and nutritional 
compositions were different among the four selected 
products: raspberry flavour mushroom in pink and 
white colour with a mushroom shape; mint humbugs 
in brown and golden stripe with an ellipse shape; 
teeth and lips in pink and white colour with a teeth-
like appearance, and tub in brown with a cola bottle 
shape. These sweets, made and purchased from Tesco 
Ireland Ltd, were labelled as RFM, Mint, Teeth and Tub, 
respectively. Two images for each sweet type were 
obtained with one used for calibration and the other 
for prediction purposes. A mixed image involving all 
the sweets was also acquired. For background removal, 
PCA was first applied on the standard normal variate 
(SNV) pre-processed spectra. A mask for each sample 

was obtained by thresholding the PC1 score image. 
The threshold value was manually selected based on 
the histogram of the PC1 score image.

Dataset 4: Puffed cereal
This dataset consists of NIR hyperspectral images 
of three types of puffed cereals: honey nut corn-
flakes, crunchy cookie cereal and crisp flakes of 
rice made and purchased from Tesco in Ireland. The 
sample types were labelled as Corn, Wheat and Rice, 
respectively, according to their main components. 
Two images for each cereal type were obtained with 
one used for calibration and the other for prediction 
purposes. A mixed image involving all the cereals 
was also acquired. Background removal was carried 
out in a similar way as described for the sweets 
sample.

Figure 1. Colour images of representing all samples used in the study, from top left: Nuts and dried fruits used for model 
calibration and validation [going from top-left to bottom: almond; peanut; hazelnut, going from top-right to bottom: 
sultana, cranberry, raisin); Packaging materials used for validation [cardboard (circles), polypropylene (PP, thick rectangles), 
high density polyethylene (HDPE, squares), polystyrene (PS, thin rectangles), polyethylene terephthalate (PET, triangles)]; 
Sweet samples used for calibration (from top-left to bottom-right: teeth, RFM, tub and mint); Puffed cereal samples used 
for model calibration (from left to right: wheat, corn and rice); Paint paper samples used for calibration (from left to right 
paint types are oil, acrylic, water colour and ink).
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Dataset 5: Paint
This dataset consists of NIR hyperspectral images of four 
types of red pigments applied on watercolour paper: 
oil (Rembrandt oil colour Series 3, 377 permanent Red 
medium), acrylic (Primary red magenta, Prismo, 256), 
Watercolour (Van Gogh, G371 Red) and ink (Pebeo, 
colorex watercolour ink; 50 % mixture of 60 magenta 
and 59 primary yellow). A 2.5 × 2.5 cm square sample of 
each pigment applied on watercolour paper was used 
for calibration. An independent prediction image was 
composed of a mosaic of six to eight samples of each 
pigment on water colour paper cut in different shapes to 
facilitate their identification. The reflectance histogram at 
1468 nm was used to remove the image background. The 
threshold value for each image was selected by the Otsu 
method,13 applied via the “graythresh” function of the 
Matlab image processing toolbox.

Results and discussion
Variographic analysis for each dataset
Variogram plots are computed and shown in the 
Supplementary Material for each dataset. Due to different 
spatial patterns, the presented semi-variogram plot 
differs from sample to sample. The variogram of the Mint 
of Dataset 3, shows a clear example of how the spatial 
variability of the images is registered by the variogram 
plot. The directional variogram North–South follows a 
sinewave-type periodic oscillation. This is related to the 
horizontal stripe pattern of the mean hyperspectral image. 
The amplitude of the North–South variogram curve for 
the Mint corresponds to the average vertical distance 
between same colour stripes on the mean hyperspectral 
image of the Mint (15 pixels). This is because the lowest 
semi-variance corresponds to pairs of pixels for which 
the values are most correlated. In the case of the Mint, 
the pixels with the most correlated values would be pixels 
from the same colour stripes. This means that low semi-
variances appear periodically at the same distance as the 
stripes repeat. Regarding the East–West spatial pattern 
of the image, the main spatial variation in this direction 
is due to the shape of the sweet. The shadows and the 
pattern of the lines at the East and West edges of the 
sweet produce a higher frequency of low intensity values 
on these regions. The width of the sweet in the image 
is 60 pixels. Accordingly, the East–West semi-variance 
starts decreasing after a lag distance of 40 pixels and 

reaches a local minimum at 60 pixels. This means that 
pairs of pixels located at 60 pixels of distance of each 
other (i.e. pairs of pixels at opposite ends of the sweet in 
the East–West direction) tend to have correlated values. 
This correlation can be explained by the shadows and 
similar spatial patterns found on the East and West edges 
of the sweet. This effect of the shape of the samples on 
the variogram can be observed for every curved sample 
and it is especially evident in the most regularly curved 
samples, such as the Peanut in Dataset 1 (Figure S2) and 
the PS spoon in Dataset 2 (Figure S3).

Comparison of sampling times for each 
method
The sampling times required for each method and 
dataset are shown in Table 1. In general, the KS selec-
tion method was the slowest, requiring up to 4 min, 
depending on the sample set. The Stratified sampling 
method was faster (0.3–0.6 s), while the grid and vari-
ogram approaches were faster again and took a similar 
amount of time for selection (0.05–0.15 s). The random 
method was by far the fastest overall (0.001–0.003 s). 
The time difference between different datasets is much 
higher in KS than in the other methods. Datasets in the 
table are ordered according to the number of pixels 
in the calibration dataset. Packaging materials are by 
far the largest samples, followed by nuts. Both data-
sets have more than 20,000 pixels as an average for 
each class on the calibration dataset, while the paint, 
sweets and cereal dataset have below 10,000 average 
number of pixels for each class. As observed in Table 1, 
except for the stratified method, sampling times were 
higher for samples with higher number of pixels on the 
calibration dataset. KS sampling times were by far the 
most affected by the average size of the calibration 
samples. This could be explained by the fact that the 
other methods are based on separating the calibration 
dataset in groups and then randomly selecting a certain 
number of pixels from each group; while the KS method 
directly selects pixels for calibration out of the whole 
calibration dataset. Regarding the stratified sampling 
method, as it is an iterative method where the clus-
tering needs to converge according to the spectra of the 
pixels, the sampling times could be more related to the 
spectral differences between classes than to the size 
of the samples, which would explain why the sampling 
times for this method were not ordered according to the 
size of the calibration dataset.
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Classification model performance for each dataset and 
sampling method, in terms of G-mean and % CC calcu-
lated on test set and prediction image, are shown in Table 
2 (with the highest classification metric in each column 
printed in red). Compared to the model built with all 
the pixels from each class image (see prediction maps 
in Figure S7), the best sampling method has presented 
better or similar performance. Overall, the % CC for the 
spectral test set was similar to that of the Image dataset, 
with the exception of the “Paint” dataset, as discussed 
further below. With respect to the “Nuts and dried fruits” 
dataset, the random selection method resulted in the 
best model performance in terms of the % CC of the 
spectral test set, while the Variogram method performed 
best in terms of the test image. However, the random, 
Grid and Variogram selection methods performed simi-
larly to each other when applied to the prediction image, 
with % CC ranging from 92 % to 92.61 % and G-mean 
ranging from 0.92 to 0.93. On the other hand, for 
the “Packaging” dataset, while the Grid and Variogram 
methods performed best in the spectral test set, the KS 
and Stratified sampling methods performed best when 
applied to the prediction image, and were very similar to 
the Grid and Variogram selection methods in terms of 
% CC and G-mean. Considering the “Cereal” dataset, the 
KS selection method performed best overall, resulting in 
substantially higher G-mean and % CC in both the spec-
tral test set and prediction image, whereas for the “Sweet” 
dataset, the Grid method resulted in the best model 
performance. Finally, for the “Paint” dataset, the Grid 
and Variogram methods performed best on the spec-
tral test set (although all selection methods produced 
a similar % CC of >99 %), while the KS and random 
selection methods performed best on the prediction 
image. Moreover, the % CC on the “Paint” prediction 
image (ranging from 75.49 % to 77.17 %) was substan-
tially lower than that for the spectral test set (ranging 
from 99.12 % to 99.29 %). Observing the variations in 

model performance over the different datasets studied, 
it is clear that no single method of spectral selection is 
optimal. However, it is interesting to compare the selec-
tion methods in more detail, in order to gain insights as to 
when a given selection method may be more appropriate 
to use. With this in mind, the following sections discuss 
the results for each dataset individually.

Performance indicators for Dataset 1: Nuts 
and dried fruit
The number and percentage of selected pixels (averaged 
over the six classes), grid size and sampling method is 
shown in Table 3. As the number of grids increased from 
5 × 5 to 10 × 10 the average number of pixels selected 
from each class increased from 31–28 to 98–104, corre-
sponding to 0.2 % to 0.7 % of pixels per class. The number 
and corresponding percentage of pixels selected using 
the Variogram method was consistently higher than each 
of the other methods. This is because the “ceil” function 
of Matlab to round to the next higher integer was used 
to determine the number of spectra selected from each 
rectangular grid.

Although the mean model performance indicators 
presented in Table 2 and discussed in the previous 
section give an initial basis for comparison of the different 
sampling methods tested, they do not provide any infor-
mation on the stability of performance metrics over 
repeated random sampling. In order to display this infor-
mation, boxplots showing variation in selection method 
performance indicators are shown in Figure 2. The top 
row shows the variation in % CC of the 100 bootstraps of 
the selection method as calculated on the spectral valida-
tion set. For the random selection method, the % CC was 
quite stable, remaining at around 91 % as the number of 
grids increased. However, the variation in % CC decreased 
as the number of grids increased, indicating higher model 
stability. By comparison, for any given number of grids 
there was no variation in the KS, since the KS selection 

Dataset (N pixels) Rand KS Strat Grid Var
Packaging (27,529) 0.003 254.886 0.410 0.133 0.152
Nuts (21,187) 0.003 110.319 0.371 0.127 0.142
Paint (8544) 0.001 2.949 0.336 0.065 0.045
Sweets (4287) 0.001 2.009 0.370 0.049 0.042
Cereal (3738) 0.001 1.242 0.555 0.049 0.038

Table 1. Average sampling times over classes of calibration samples for each method and dataset (seconds).
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method has no random component. However, the % CC 
for the KS selection increased with the number of grids 
from 86 % (5 × 5) up to a stable value of 89 % from 7 × 7 
grids. Similar to the random sampling method, the strati-
fied sampling method resulted in a stable % CC around 
91 % at all numbers of grids, with a smaller variation in 
% CC at higher numbers of grids. The regular grid method 
exhibited unusual behaviour with respect to % CC, being 
higher for odd numbers of grids than for even numbers 
of grids. The overall highest % CC (92 %) and lowest vari-
ation in % CC was found for 9 × 9 grid selection. As for 
the variogram selection method, the % CC increased with 
the number of selected spectra, reaching a maximum 
value around 91 % for the 10 × 10 grids. Although the 
random selection method resulted in the best model 
performance in terms of the % CC of the spectral valida-
tion set (Table 2), the Variogram method produced more 
stable model performance metrics.

The bottom row of Figure 2 shows the absolute devia-
tion of the RMS of the selected pixels from the global 
RMS of the image from which the pixels were sampled. 
The lower this value is, the more representative the 
selected spectra are of the original data from which they 
were sampled. Considering at first the absolute deviation 
of RMS for the spectra selected using the KS method, 
it is clearly higher than that for any of the other selec-
tion methods, indicating the KS-selected spectra are 
least representative. In addition, the absolute deviation 
of RMS decreases as the number of sampled spectra 
increases, which could be expected: a higher number 
of spectra should be more representative. The lower 
representativeness can also be related to the relatively 
poorer classification model performance observed for 
the KS-selected spectra. Likewise, the more representa-
tive spectra as selected by the Stratified sampling and 
Variogram sampling methods (with a lower absolute devi-
ation in RMS) resulted in better performing classification 
models. Moreover, the Variogram method consistently 
selected fewer spectra.

Prediction maps, calculated from the model closest 
to the mean performance, are shown in the top row of 
Figure 3. Corresponding to the % CC results in Table 2, 
the Random, Grid and Variogram methods resulted in 
the lowest number of misclassified pixels. Three classes, 
i.e. sultana, cranberry and peanut, were all classified well, 
regardless of the sampling method used. The raisin class 
experienced some misclassified pixels, primarily at the 
edges; however, the KS sampling method was less prone M
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to such misclassifications. The almond and hazelnut 
samples were more difficult to classify, with misclassified 
pixels occurring both at the edge and within each sample. 
Compared with the other selection methods, KS experi-

enced a higher percentage of misclassified pixels within 
the hazelnut sample.

From examination of the pixels selected by each 
method, as shown in the lower panels of Figure 3, it is 

Rand KS Strat Grid Var
Grid 5 × 5 
N pixels (% pixels)

31 (0.2) 31 (0.2) 32 (0.2) 31 (0.2) 38 (0.3)

Grid 6 × 6 
N pixels (% pixels)

39 (0.3) 39 (0.3) 40 (0.3) 39 (0.3) 46 (0.3)

Grid 7 × 7 
N pixels (% pixels)

52 (0.4) 52 (0.4) 53 (0.4) 52 (0.4) 60 (0.4)

Grid 8 × 8 
N pixels (% pixels)

65 (0.5) 65 (0.5) 66 (0.5) 65 (0.5) 72 (0.5)

Grid 9 × 9 
N pixels (% pixels)

82 (0.6) 82 (0.6) 83 (0.6) 82 (0.6) 89 (0.6)

Grid 10 × 10 
N pixels (% pixels)

98 (0.7) 98 (0.7) 99 (0.7) 98 (0.7) 104 (0.7)

Table 3. Number of selected pixels per method for Dataset 1 (Nuts).

Figure 2. Boxplots showing variation in selection method performance indicators grouped by grid size for the “Nuts and 
dried fruits” dataset. The top row shows the % Correct classification of the 100 bootstraps of the selection method as cal-
culated on the spectral test set, while the bottom row shows the absolute deviation of the RMS of the selected pixels from 
the global RMS of the image from which the pixels were sampled. The sampling method is shown on the x-axis in each 
subplot, where R = random, K = Kennard–Stone, S = Stratified Sampling, G = grid sampling, V = variogram sampling.
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clear that the KS method consistently selected edge 
pixels, as these are the pixels that produce the most 
different spectra, while the Random, Grid and Variogram 
methods provide a more regular distribution of selected 
pixels over the sample surface. This explains why the 
absolute deviation in RMS is higher for the KS-selected 
spectra and why the edge pixels of the raisin sample are 
better predicted, while the central regions of hazelnut are 
worse predicted, by the model built using KS-selected 
spectra.

Performance indicators for Dataset 2: Plastics
The average number and percentage of selected pixels 
per class for the plastics dataset is shown in Table 4. 
Again, the number of pixels selected increases with the 
grid size, while, again, a slightly higher number of pixels 

was chosen using the variogram method. As the grid size 
increased from 5 × 5 pixels to 10 × 10 pixels, the average 
number of pixels selected per class increased from 34–41 
to 105–110.

The variation in spectral selection performance indi-
cators over the 100 bootstraps, as shown in Figure 4, 
indicates that all selection strategies resulted in excel-
lent model performance (>99 % CC), with the variation 
in % CC decreasing as the number of pixels selected 
increased. Similarly, the absolute deviation in RMS 
decreased as the number of pixels increased, and the 
trends in KS were similar to the previously discussed 
dataset. For all other selection methods, the number of 
spectra selected had a greater impact than the selection 
method. For the maximum number of selected spectra 
(10 × 10 grid in Figure 4), the Grid and Variogram 

Figure 3. Prediction maps (top row) for each sampling method applied to the “Nuts and dried fruits” dataset. The PLS 
model closest to the mean model performance of 100 runs was selected for comparison of the different selection meth-
ods. The pixels selected from each class image and for each selection method are shown below the prediction maps.
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sampling methods resulted in the best overall model 
performance, lowest variation in model performance, 
and lowest absolute deviation in RMS. However, inspec-
tion of the prediction maps in Figure 5 indicates that 

the stratified sampling method resulted in the lowest 
number of misclassified pixels overall, agreeing with 
the highest G-mean in Table 2. The model built using 
KS-selected spectra had fewer edge pixels misclassi-

Rand KS Strat Grid Var
Grid5 × 5 
N pixels (% pixels)

34 (0.2) 34 (0.2) 35 (0.2) 34 (0.2) 41 (0.2)

Grid6 × 6 
N pixels (% pixels)

40 (0.2) 40 (0.2) 41 (0.2) 40 (0.2) 46 (0.3)

Grid7 × 7 
N pixels (% pixels)

59 (0.3) 59 (0.3) 61 (0.4) 59 (0.3) 66 (0.4)

Grid8 × 8 
N pixels (% pixels)

70 (0.4) 70 (0.4) 71 (0.4) 70 (0.4) 76 (0.4)

Grid9 × 9 
N pixels (% pixels)

93 (0.5) 93 (0.5) 95 (0.5) 93 (0.5) 98 (0.6)

Grid10 × 10 
N pixels (% pixels)

105 (0.6) 105 (0.6) 106 (0.6) 105 (0.6) 110 (0.6)

Table 4. Number of selected pixels and sampling times per method for Dataset 2 (plastics).

Figure 4. Boxplots showing variation in selection method performance indicators grouped by grid size for the “Plastics” 
dataset. The top row shows the % Correct classification of the 100 bootstraps of the selection method as calculated on 
the spectral test set, while the bottom row shows the absolute deviation of the RMS of the selected pixels from the global 
RMS of the image from which the pixels were sampled. The sampling method is shown on the x-axis in each subplot, 
where R = random, K = Kennard–Stone, S = Stratified Sampling, G = grid sampling, V = variogram sampling.
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fied, while the models built using the Grid or Variogram 
approaches had fewer within object pixels misclassified. 
Again, this can be related back to the tendency of the 
KS method to select edge pixels (see lower panels of 
Figure 5).

Performance indicators for Dataset 3: Sweets
When comparing the number of pixels selected by each 
method applied to the “Sweets” dataset, as shown in 
Table 5, it is again clear that the number increased with 
gridsize, ranging from 1.3 % to 4.9 % of the total number 

Figure 5. Prediction maps (top row) for each sampling method applied to the “Plastics” dataset. The PLS model closest 
to the mean model performance of 100 runs was selected for comparison of the different selection methods. The pixels 
selected from each class image and for each selection method are shown below the prediction maps.

Rand KS Strat Grid Var
Grid 5 × 5
N pixels (% pixels)

31 (1.3) 31 (1.3) 32 (1.3) 31 (1.3) 44 (1.8)

Grid 6 × 6
N pixels (% pixels)

39 (1.6) 39 (1.6) 40 (1.7) 39 (1.6) 50 (2.1)

Grid 7 × 7
N pixels (% pixels)

56 (2.3) 56 (2.3) 57 (2.4) 56 (2.3) 70 (2.9)

Grid 8 × 8
N pixels (% pixels)

72 (3.0) 72 (3.0) 73 (3.0) 72 (3.0) 84 (3.5)

Grid 9 × 9
N pixels (% pixels)

89 (3.7) 89 (3.7) 90 (3.7) 89 (3.7) 98 (4.1)

Grid 10 × 10
N pixels (% pixels)

107 (4.4) 107 (4.4) 108 (4.5) 107 (4.4) 119 (4.9)

Table 5. Number of selected pixels and sampling times per method for Dataset 3 (sweets).
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of pixels per class. In this case, similar to the previous 
dataset, the variogram method consistently selected a 
slightly higher number of pixels than the other methods, 
(44–119 vs 31–107), indicating the number of grids 
defined by the variogram method was higher than 5 × 5.

The variation in selection method performance indi-
cators for this dataset (Figure 6) indicates again that 
variation and the number of outliers decreased as the 
number of spectra selected increased. In this case, the 
highest overall % CC and lowest variation in % CC over 
the 100 bootstraps was found for the Grid and Variogram 
methods. However, the absolute deviation in RMS was 
much higher for the Grid selection method than it was 
for the Variogram selection method, indicating that a 
more representative calibration set, in the sense of the 
variation from the mean as captured by the RMS statistic, 
may not always produce a better classification model. 
Observation of the prediction maps in Figure 7 again 
indicates that the Random, Grid and Variogram selection 
methods performed well, despite some misclassified edge 

pixels, while the KS and Stratified methods experienced a 
higher amount of misclassified pixels, especially in central 
regions of the “teeth” class. This can be understood by 
observation of the selected pixels from each dataset, as 
shown in the lower panels of Figure 7, indicating a better 
distribution of selected pixels over the sample surface for 
the Random, Grid and Variogram methods than for the 
spectral-based KS or Stratified methods.

Performance indicators for Dataset 4: Cereals
In terms of the number of pixels selected by each method 
(Table 6), similarly to the Plastics and Sweets datasets, the 
number of pixels selected by the Variogram method was 
higher than that selected by the other methods (34–104 
vs 28–99). Varying the number of grids from 5 × 5 to 
10 × 10 increased the percentage of selected spectra 
from just over 1 % to just over 4 %.

When considering the boxplots, showing the vari-
ation in selection performance metrics over the 100 
bootstraps (Figure 8), KS was by far the best performing 

Figure 6. Boxplots showing variation in selection method performance indicators grouped by grid size for the “Sweets” 
dataset. The top row shows the % Correct classification of the 100 bootstraps of the selection method as calculated on 
the spectral test set, while the bottom row shows the absolute deviation of the RMS of the selected pixels from the global 
RMS of the image from which the pixels were sampled. The sampling method is shown on the x-axis in each subplot, 
where R = random, K = Kennard–Stone, S = Stratified Sampling, G = grid sampling, V = variogram sampling.
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selection method, resulting in the highest % CC (>90 % 
as compared to 86–88 % for the other methods). Similar 
to the other datasets, the absolute deviation in RMS 
was lowest for the Stratified and Variogram methods, 

however, this did not result in a better classification 
model performance. When considering the spectra 
selected by each method (Figure 9, lower panels), it 
appears that the KS method selected more spectra 

Figure 7. Prediction maps (top row) for each sampling method applied to the “Sweets” dataset. The PLS model closest 
to the mean model performance of 100 runs was selected for comparison of the different selection methods. The pixels 
selected from each class image and for each selection method are shown below the prediction maps.

Rand KS Strat Grid Var
Grid 5 × 5
N pixels (% pixels)

28 (1.2) 28 (1.2) 30 (1.2) 29 (1.2) 34 (1.4)

Grid 6 × 6
N pixels (% pixels)

40 (1.7) 40 (1.7) 42 (1.7) 40 (1.7) 47 (2.0)

Grid 7 × 7
N pixels (% pixels)

55 (2.3) 55 (2.3) 56 (2.3) 55 (2.3) 61 (2.5)

Grid 8 × 8
N pixels (% pixels)

66 (2.7) 66 (2.7) 67 (2.8) 66 (2.7) 72 (3.0)

Grid 9 × 9
N pixels (% pixels)

88 (3.7) 88 (3.7) 90 (3.7) 88 (3.7) 95 (3.9)

Grid 10 × 10
N pixels (% pixels)

98 (4.1) 98 (4.1) 99 (4.1) 98 (4.1) 104 (4.3)

Table 6. Number of selected pixels and sampling times per method for Dataset 4 (cereal).
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Figure 8. Boxplots showing variation in selection method performance indicators grouped by grid size for the “Cereals” 
dataset. The top row shows the % Correct classification of the 100 bootstraps of the selection method as calculated on 
the spectral test set, while the bottom row shows the absolute deviation of the RMS of the selected pixels from the global 
RMS of the image from which the pixels were sampled. The sampling method is shown on the x-axis in each subplot, 
where R = random, K = Kennard–Stone, S = Stratified Sampling, G = grid sampling, V = variogram sampling.

Figure 9. Prediction maps (top row) for each sampling method applied to the “Sweets” dataset. The PLS model closest 
to the mean model performance of 100 runs was selected for comparison of the different selection methods. The pixels 
selected from each class image and for each selection method are shown below the prediction maps.
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within the classes than in previous instances. Perhaps 
this and the improved performance of the KS method 
can be understood when considering the morphology of 
the samples included in the cereal dataset, as compared 

to the others. While the other samples were relatively 
smooth surfaces, the cereals had rough edges within 
the samples, which provide sufficient spectral variability 
for selection by KS.

Rand KS Strat Grid Var
Grid 5 × 5
N pixels (% pixels)

36 (0.9) 36 (0.9) 37 (0.9) 36 (0.9) 42 (1.1)

Grid 6 × 6
N pixels (% pixels)

50 (1.3) 50 (1.3) 51 (1.3) 50 (1.3) 57 (1.4)

Grid 7 × 7
N pixels (% pixels)

66 (1.7) 66 (1.7) 67 (1.7) 66 (1.7) 72 (1.8)

Grid 8 × 8
N pixels (% pixels)

80 (2.0) 80 (2.0) 81 (2.1) 80 (2.0) 86 (2.2)

Grid 9 × 9
N pixels (% pixels)

108 (2.7) 108 (2.7) 109 (2.8) 108 (2.7) 115 (2.9)

Grid 10 × 10
N pixels (% pixels)

125 (3.2) 125 (3.2) 126 (3.2) 125 (3.2) 131 (3.3)

Table 7. Number of selected pixels and sampling times per method for Dataset 4 (paints).

Figure 10. Boxplots showing variation in selection method performance indicators grouped by grid size for the “Paint” 
dataset. The top row shows the % Correct classification of the 100 bootstraps of the selection method as calculated on 
the spectral test set, while the bottom row shows the absolute deviation of the RMS of the selected pixels from the global 
RMS of the image from which the pixels were sampled. The sampling method is shown on the x-axis in each subplot, 
where R = random, K = Kennard–Stone, S = Stratified Sampling, G = grid sampling, V = variogram sampling.
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Performance indicators for Dataset 5: Paints
Similarly to the plastics, sweets and cereals datasets, the 
selection of spectra from the paint samples resulted in 
a higher number of pixels selected using the Variogram 
method (42–131 vs 36–125), representing around 1 % 
(for 5 × 5 grids) and 3 % (for 10 × 10 grids) of the total 
amount of pixels in each class image (Table 7).

In this instance, the boxplots showing the variation in 
selection performance indicators (Figure 10) exhibit a rela-
tively high number of outliers for the Random, Stratified 
and Grid methods when 1 % of pixels are selected 
(corresponding to 5 × 5 grid in Figure 10). However, the 
number of outliers decreased as the number of selected 

pixels increased, indicating greater model stability. At 
the highest number of selected pixels (approximately 
4 %, corresponding to the 10 × 10 grid in Figure 10), the 
selection methods all produced similar models in terms 
of % CC, all with relatively low variation in % CC, indi-
cating that these samples had little spatial variability 
in the spectra—i.e. they were relatively homogeneous 
compared to the “Nuts and dried fruits” or “Sweets” data-
sets discussed previously. Similarly, the absolute devia-
tion in RMS decreased both in magnitude and variation 
as the number of selected pixels increased. Inspection of 
the prediction maps indicates substantial misclassifica-
tion around the edge regions of the samples and confu-

Figure 11. Prediction maps (top row) for each sampling method applied to the “Paint” dataset. The PLS model closest to 
the mean model performance of 100 runs was selected for comparison of the different selection methods. The pixels 
selected from each class image and for each selection method are shown below the prediction maps.
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sion between the Acr, WTC and Ink classes. This explains 
the substantial decrease in % CC observed when the 
models were applied to the test image, as seen in Table 2.

Conclusions
In this study, several sampling methodologies were 
compared for building classification models from hyper-
spectral imaging data. In terms of time and model 
performance, random sampling emerged as the optimal 
strategy. However, the variation model performance 
indicators over 100 bootstraps in the random selection 
was generally higher than in any of the other sampling 
methods. The use of variographic analysis in the selec-
tion of a gridsize for image-plane-based spectral selec-
tion resulted in a more representative subset selection, 
while also reducing the variation in classification error 
over 100 bootstraps. Considering the significantly lower 
time required for the random selection, however, the 
improvements in model performance obtained using the 
Grid or Variogram methods are somewhat modest. The 
results show that the optimal selection method depends 
on the characteristics of the sample studied. For a homo-
geneous sample, random selection presented a good 
balance between classification error and time required 
for selection. However, for a smooth heterogeneous 
sample, the Grid or Variogram methods performed better. 
The Kennard–Stone selection method did not perform 
well in most cases, due to the selection of extreme edge 
pixels. However, in the case of a sample with rough edges 
in its interior (i.e. the cereal samples) the Kennard–Stone 
method performed very well. As hyperspectral images 
provide additional spatial information not available in 
conventional spectroscopic data, the use of variographic 
analysis as a preliminary step to understand sample 
morphology prior to the decision on a spectral sampling 
technique is recommended.
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