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Hyperspectral Imaging (HSI) utilises the reflectance information of a large number of contiguous spectral bands to solve various problems. 

However, the relative proximity of spectral signatures among classes can be exploited to generate an adaptive hierarchical structure for HSI clas-

sification. This enables a level by level optimisation for clustering at each stage of the hierarchy. The Umbrella Clustering algorithm, introduced in 

this work, utilises this premise to significantly improve performance compared to non-hierarchical algorithms which attempt to optimise clustering 

globally. The key feature of the proposed methodology is that, unlike existing hierarchical algorithms which rely on fixed or supervised structures, 

the proposed method exploits a mechanism in spectral clustering to generate a self-organised hierarchy. The algorithm gradually zooms into the 

feature space to identify levels of clustering at each stage of the hierarchy. The results further demonstrate that the generated structure tallies 

with human perception. In addition, an improvement to Linear Discriminant Analysis (LDA) is also introduced to further improve performance. This 

modification maximises the pairwise class separation in the feature space. The entire algorithm includes this modified LDA step which requires a 

certain amount of class information in terms of features, at the training phase. The classification algorithm which incorporates all novel concepts 

was tested on the HSI data set of Pavia University as well the database of Common Sri Lankan Spices and Adulterants in order to assess the ver-

satility of the algorithm.
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Introduction
Hyperspectral images contain intensity values of a large 
number of contiguous spectral bands. This facilitates 
the detection of subtle details in a given image. Hence 
Hyperspectral Imaging (HSI) is widely used in many appli-
cations, such as remote sensing, food quality testing, 
medical imaging and surveillance.1–4 In order to detect 
the finer details in a given image, a number of classifica-
tion algorithms for HSI have been developed recently, 
which include pre-processing techniques, clustering algo-
rithms, probabilistic frameworks etc.

As a large amount of data in hyperspectral images could 
be redundant as well as misleading in some cases, effec-
tive dimensionality reduction techniques and feature 
extraction mechanisms have also been developed.5 
Principal Component Analysis (PCA)6 is a widely applied 
linear dimensionality reduction technique in HSI, which 
reduces the dimension of a data set by projecting data 
points onto the directions of maximum overall scatter in 
the original space. Folded-PCA7 achieves the same objec-
tives of conventional PCA with lower computational cost 
and memory requirement, by representing the spectral 
vectors of the image as a matrix. Linear Discriminant 
Analysis (LDA)8 is a classification technique as well as a 
mechanism of feature extraction, which maximises the 
between-class scatter while minimising the within-class 
scatter of a data set. Local Fisher Discriminant Analysis9 
proposes a more effective mechanism to determine the 
within-class scatter matrix and the between-class scatter 
matrix in LDA, by considering local neighbourhoods in 
the data space.

Non-linear transformations such as Locally Linear 
Embedding (LLE)10–13 and sparse discriminant manifold 
embedding14 are also used to reduce the dimension of 
hyperspectral image data sets. These techniques first 
identify low-dimensional manifolds within the high-
dimensional data space that can effectively represent 
the data and then provide the transformation procedure 
to collapse the high-dimensional data space to the low-
dimensional space, while preserving the neighbourhood 
of each data point.

Feature Space Discriminant Analysis (FSDA)15 is a 
dimensionality reduction technique as well as a feature 
extraction mechanism which consists of a feature extrac-
tion process prior to maximising the variance of the data 
points. There are other feature extraction mechanisms, 
such as band selection based on Visual Assessment of 
cluster Tendency (VAT)16 and Nonparametric Feature 

Extraction (NFE).17 From analysing the above dimen-
sionality reduction and feature extraction techniques, it 
can be concluded that there is a trade-off between the 
performance and the computational requirements asso-
ciated with their implementation.

Pre-processing mechanisms which do not transform 
the data points into a new space have also been devel-
oped recently. Relevance-Based Feature Extraction18 
is one such mechanism of feature extraction, which 
weights each feature of the data points, such that the 
maximum separation among classes is achieved in the 
original space.

Apart from the algorithms developed to perform pre-
processing, a number of algorithms have been developed 
to cluster and classify HSI data. Rank-two Nonnegative 
Matrix Factorisation (rank-two NMF)19 is an iterative clas-
sification algorithm based on a fixed hierarchical structure. 
Hierarchical SVM20 is a two-stage classification algorithm 
based on Support Vector Machine (SVM)21 for HSI data. 
An agglomerative structure of a hierarchical classification 
algorithm is presented,22 where a two-stage process is 
employed. In the first stage, data points are classified 
together, subjected to spatial constraints as opposed 
to the second stage where the individually classified 
components are combined with no spatial constraints 
considered. Simultaneous Orthogonal Matching Pursuit 
(SOMP)23 and Simultaneous Subspace Pursuit (SSP)23 are 
two classification algorithms developed, based on the 
sparse representation of HSI data.
Partitioned clustering techniques have been used to 

develop a classification algorithm for HSI24 incorporating 
both spatial and spectral information of the image. In this 
algorithm, each pixel is classified using SVM on the spec-
tral data, while a probabilistic approach is undertaken 
to incorporate the spatial information of the image, by 
considering the class labels of the eight neighbouring 
pixels of each pixel in the image. Modern optimisa-
tion techniques such as the Artificial Bee Colony algo-
rithm have also been incorporated in HSI classification 
recently.25 A Game Theoretical classification Algorithm 
(GTA),26 which uses a Conditional Random Field (CRF) 
to model the spatial features of the image is another HSI 
classification algorithm which incorporates both spectral 
and spatial information of the image. Recently, Deep 
Learning algorithms have been used excessively in HSI 
classification27–30 due to the high levels of accuracy they 
can achieve.
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It can be observed from existing literature that most 
hierarchical classification algorithms developed so far 
are supervised, where the number of stages and end 
members are known prior to implementation, or unsu-
pervised with a fixed structure. The main contribution 
of this paper is the proposed Umbrella Clustering algo-
rithm which exploits the relative proximity of inter-class 
scatter to self-organise the algorithm itself in a hierar-
chical manner. This enables a level by level optimisation 
of clustering procedures. This is more effective than a 
global optimisation of clustering algorithms, especially in 
situations where the inter-class scatter is non-uniformly 
distributed. This is done by adjusting the scaling param-
eter of the Gaussian kernel in the standard spectral clus-
tering algorithm31 to zoom into the data space at various 
levels. By zooming into the data set at different levels, the 
algorithm can identify the major clusters (super-clusters) 
of data points available at each stage. The scalar sweep or 
the zooming process actually provides what is called the 
“modes of clustering” or the most prominent grouping 
of clusters at each stage and its strength (quantified by 
the index and strength of the dominant Eigen-gap of 
the affinity matrix in spectral clustering). This enables 
the proper identification of the most prominent mode or 
grouping for a given data set.

The proposed method was tested on the Pavia 
University data set32 as well as the Database of Common 
Sri Lankan Spices and Adulterants33 (Mendeley Data) to 
gain accurate results for classification. One key advan-
tage of this method is its adaptability to any given dataset. 
The results of the case studies in this paper show that 
there is a significant improvement in the overall accu-
racy (around 30 %) from using the Umbrella Clustering 
algorithm, compared to that of the single-staged global 
optimisation process carried out on the Pavia University 
data set with the aid of spectral clustering.
Umbrella Clustering results in similar accuracy levels 

compared to a number of state-of-the-art classifica-
tion algorithms. However, the Umbrella Clustering algo-
rithm has the advantage of producing similar levels of 
accuracy as the other algorithms, with less training data. 
Furthermore, this algorithm has only one user input vari-
able as opposed to most of the state-of-the-art algo-
rithms which require the user to initialise a number of 
parameters. The above two advantages are extensively 
discussed in this paper.
In addition to the concept of Umbrella Clustering, a 

classification mechanism that maximises the pairwise 

class separation is also introduced in this paper. This 
is a modification of LDA which addresses the issue of 
overlapping of different classes when maximising the 
class mean to overall mean separation.34 Apart from 
maximising the pairwise class separation, this technique 
minimises the within-class separation, similar to LDA. 
However, the inclusion of the modified LDA step requires 
prior information at the training phase, nevertheless it 
enhances the performance of the entire algorithms.

Datasets
A hyperspectral image dataset from Pavia University32 
and Database of Common Sri Lankan Spices and 
Adulterants33 (Mendeley Data) were used to test the 
hyperspectral image classification algorithm developed 
in this paper.
The HSI data set from Pavia University, acquired by the 
Reflective Optics System Imaging Spectrometer (ROSIS), 
consists of 103 spectral bands with 610 × 340 pixels. 
The data set consists of pixels belonging to nine classes, 
namely asphalt, meadows, gravel, trees, painted metal 
sheets, bare soil, bitumen, self-blocking bricks and 
shadows. Figure 1(a) shows the RGB image of the area 
while Figure 1(b) shows the ground truth provided. 
This data set has been used to test a number of previ-
ously developed algorithms for HSI.35,36 The dataset of 
common Sri Lankan spices captured by a multispectral 
imaging system consists of nine spectral bands with 
315 × 393 pixels. The data set consists of pixels belonging 
to 16 classes: common Sri Lankan spices (turmeric, 
pepper, chili and curry powder), adulterants (tartrazine 
and rice flour) and adulterated versions of the aforemen-
tioned spices. Figure 1(c) shows the RGB image of the 
dataset while Figure 1(d) shows the ground truth. This 
data set also has been used to test a number of previ-
ously developed algorithms for HSI.37

Proposed method
This paper proposes an algorithm to classify HSI data, 
which consists of two main stages. The first stage is the 
application of modified LDA in order to increase the inter-
class separation to intra-class separation ratio of the 
dataset. This is a supervised procedure which requires 
class information. However, the second stage, which is 
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the main focus of the paper, organises the hierarchical 
structure of data by adjusting the scaling parameter of 
the Gaussian kernel in the standard spectral clustering 
algorithm in an unsupervised manner.

This novel algorithm zooms into the high-dimensional 
data space at different levels in a hierarchical manner and 
identifies clusters of points. These are called super-clus-
ters, as they contain data points belonging to a number 
of classes. The algorithm zooms into each super-cluster 

separately, and identifies the sub-clusters, generating a 
hierarchical structure for classification. This is discussed 
further in this paper.

Modified LDA
The mean spectral signatures and the variances of the 
nine classes in the Pavia University dataset are shown in 

7  

 

        (c)                                                                           (d) 

Figure 1 (a) RGB image of the Pavia University Scene (b) Ground truth of the Pavia University 

data set (c) RGB image of the dataset of common Sri Lankan spices (d) Ground truth of the dataset 

of common Sri Lankan spices 

 

Figure 1. (a) RGB image of the Pavia University Scene. (b) Ground truth of the Pavia University data set. 
(c) RGB image of the dataset of common Sri Lankan spices. (d) Ground truth of the dataset of common Sri 
Lankan spices.
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Figure 2(a) and (b). It can be noticed that the mean spectral 
signatures of pairs, gravel and bricks, meadows and bare 
soil, and asphalt and bitumen are quite similar. Hence, the 
separation of data points among these pairs is not a trivial 
task in the original 103-dimensional space. As a remedy, 
the data set can be transformed into a new space, where 
the between-class similarities are minimised.

Figure 3(a) shows that the spectral signatures of the 
pixels belonging to the class “trees” are embedded in the 
band of spectral signatures of the pixels belonging to the 
class “meadows”. This means that the cluster of pixels 
containing pixels belonging to “trees” is engulfed in the 
larger and more spacious cluster of pixels belonging to 
the class “meadows”. Hence, the next step of the algo-
rithm which zooms into the data space in a series of 
levels, would not be able to separate pixels among these 
two classes, no matter how deep it zooms in.
Based on this observation, a modification was proposed 

to LDA. As LDA maximises the between-class scatter by 
increasing the variance between each of the class means 
and the overall mean, there is a possibility of two classes 
overlapping in the transformed space while the separa-
tion between the class means and the overall mean is 
at its maximum level. Basically, the LDA metric can be 
maximised in a global sense while pairwise separations 
are reduced. This is because a scatter increase from the 
overall mean does not necessarily imply optimal pairwise 
separation.

This is illustrated in Figure 4(a) and (b). Figure 4(a) shows 
the clusters of data points in the original space and the 

directions of which the separation will be maximised 
through LDA. Figure 4(b) shows a possible outcome of 
LDA, leading to an overlap of two clusters in the trans-
formed space.
In order to address the aforementioned shortcoming of 

LDA, this paper suggests maximising the pairwise class 
separation instead of the class-to-overall mean separa-
tion in LDA, which is illustrated in Figure 4(c). This ensures 
minimal overlapping among clusters of data points while 
maximising the pairwise class separation and minimising 
the within-class scatter of data points, similar to LDA. 
Within-class scatter of a given class was represented by 
the variance of each class (using centroid distances) and 
the between-class scatter was calculated by obtaining 
the sum of all outer products of the vectors representing 
the separation between each of the class mean pairs. 
The equations calculating the within and between-class 
scatter matrices are given by:

	
= =

= − − ≤∑ ∑
2

1 1

1 ( )( ) ;
n n T

i j i jj i
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i j
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	 = =
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where Sb is the between-class scatter matrix, Sw is the 
within-class scatter matrix, n is the number of classes, 
nC2
 is the number of pairwise combinations obtainable 

from n classes, Lj is the number of pixels in class j, x is 
the feature vector of a pixel and x is the class mean. 
By calculating the Eigen vectors corresponding to the 

(a) (b)

Figure 2. (a) Mean spectral signatures and (b) variances of the nine classes in the Pavia University dataset.
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dominant Eigen values of Sw
–1 Sb, the transformation 

matrix can be obtained. The spectral signatures of 
the same training sample after applying modified LDA 
are shown in Figure 3(b). They are not overlapped, 
as opposed to the previous case in Figure 3(a). This 
means that the clusters of data points in the trans-
formed space are separated more effectively from one 
another, which is a favourable condition for convenient 
classification.
The between- to within-class scatter ratio of the nine 
classes in the Pavia University data set, with and without 
the proposed modified LDA technique, is illustrated in 
Figure 5, which shows that the ratio has increased upon 
the application of modified LDA. Although the ratio has 
decreased in classes 7 and 9, the effect of the reduc-
tion is insignificant due to the high absolute value of the 
ratio. The overall increase in the between- to within-

Figure 3. Spectral signatures of a training sample representing four classes of the data set when (a) LDA and (b) modified 
LDA are applied.

Figure 4. (a) Maximising vectors in classical LDA, (b) overlapping of different classes 
and (c) maximising vectors in the proposed modification to LDA.

Figure 5. Between- to within-class scatter ratio with and 
without the proposed modified LDA technique.
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class scatter implies a higher degree of separation among 
classes in the new space, compared to that of the original 
space.

In order to compare the within- and between-class 
scatters of each class in Figure 5, the class variance and 
the mean squared distance (Euclidean distance) between 
each point in the class with all other points in the data 
set which do not belong to the same class, were used 
respectively.

Adaptive hierarchical clustering: 
Umbrella Clustering
An unsupervised clustering mechanism is required to 
generate a self-organising hierarchical structure for 
classification. As spectral clustering can be adaptively 
used to zoom in and out of the space, using the train-
able parameter in the Gaussian kernel employed in its 
implementation, spectral clustering becomes a good 
candidate for the generation of the hierarchical struc-
ture of classification. Hence, this algorithm is based on 
spectral clustering, which identifies the structure of the 
data set and clusters them according to their degree of 
affinity. The steps and respective equations of spectral 
clustering are as follows.
1)	Generating the distance matrix

	 = − ∀ ∈, {1, }ij i j i j ND x x 	 (3)

where Dij = measure of distance between pixels i and j 
(Euclidean distance), x = feature vector of a pixel and N = 
number of pixels.
2)	Generating the affinity matrix using a Gaussian kernel

	 σ
−

= 22
ij

ij e
D

A 	 (4)

where Aij = Measure of affinity between pixels i and j σ = 
scale factor.
3)	Generating the graph Laplacian

	 =
 = == 

= ≠

∑ 1

0

N
kj iji

kj

W k j

W k j

A
W 	 (5)

	 − −=
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2 2L W AW 	 (6)

where L = graph Laplacian, W = normalising matrix.

4)	Finding the Eigenvectors corresponding to the domi-
nant Eigenvalues of the Laplacian matrix

	 LV = λV	 (7)

	 Xnew = [V1   V2 ... Vt]	 (8)

where V = Eigen vectors of L, λ = Eigen values of L, Xnew 
= feature vectors in the new space, t = required number 
of dimensions.
The degree of affinity, of which spectral clustering is 
based on, is a subjective measurement which depends 
on the point of observation. The parameter σ can be 
identified as a parameter which controls the level of 
zooming in and out of the data set when performing 
spectral clustering.4

When σ decreases, the degree of affinity between a 
given pair of points decreases.4 This is similar to zooming 
into the data space where the distance between two 
points seems to appear much larger, lowering the degree 
of affinity. Similarly, an increase in σ can be explained 
as the process of zooming out of the data space. This 
concept is exploited in Umbrella Clustering, which is a 
hierarchical clustering algorithm that organises its hierar-
chical structure autonomously.

The number of clusters present in a data set, at a given 
value of σ can be identified by the structure of the affinity 
matrix. Let us call the number of prominent Eigenvalues 
of the affinity matrix at a given value of σ, the “mode” of 
clustering.

The prominent mode of clustering or the most promi-
nent number of clusters present in a dataset at a given 
level of zooming in, can be effectively calculated by

	 G(i) = λi − λi + 1       i = 1, 2, ... , N – 1	 (9)

	 =PM arg max
i

G 	 (10)

where λs are the Eigenvalues of the normalised affinity 
matrix, G is the vector containing the differences between 
the adjacent Eigenvalues when sorted in the descending 
order, N is the number of pixels and PM is the prominent 
mode of the given data set. As the differences between 
adjacent Eigenvalues called Eigen gaps [the value G(i)] 
spike, this signals the possibility of clustering the data set 
by the corresponding number of classes i. This is called 
a mode in the cluster formation. The magnitude of the 
spike at i [i.e. G(i)], symbolises the clarity or the precision 
of separation of i number of clusters for the given data 
set.
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Multiple modes can exist for a given dataset. Each 
mode has a corresponding index i and strength G(i). 
Hence, a measure of precision (P) for the most prominent 
number of clusters calculated by Eqn (10) is given by

	 =P max
i

G 	 (11)

Hence the mode with the maximum strength as per 
Eqn (11) generates the most prominent mode for the 
given data set. This mode's index i yields the optimal 
number of clusters the data set can be arranged in, in the 
current iteration (zoom level). At this point the separation 
between i number of classes supersedes the separation 
between any j; j ≠ i classes for the current iteration (zoom 
level) of the data set.
The proposed algorithm first calculates the modes of 

clustering present in a data set for a range of σ values 
(different zoom levels into the data set) and identifies 
the mode with the highest precision (most prominent 
mode), along with the respective value of σ. Next, it 
performs spectral clustering on the data set using Eqns 
(3–8), with the σ value and the number of Eigenvectors 
to be extracted specified based on the index of the most 
prominent mode. The algorithm then labels the resulting 
clusters using the k-means algorithm. In this way, the 
Umbrella Clustering algorithm decides the number of 
branches (super-clusters) in the hierarchical structure 
autonomously, along with an optimum value for the 
tuning parameter σ.

In the next step, the algorithm considers only one of 
the clusters separated in the previous stage, for which it 
calculates the modes of clustering and selects the most 
prominent mode with the corresponding value of σ, and 
performs spectral clustering and labels the clusters. In 
this manner, the algorithm zooms into different parts 
of the data set at different levels and clusters the data 
points at each level of zooming. This is repeated until only 
two modes are available for sub-clustering a given cluster, 
namely, the mode one and mode N, where N is the total 
number of data points present in the current cluster. This 
symbolises the end node of the hierarchical structure, 
where the current cluster cannot be sub-divided into any 
more sub-clusters.

This is an unsupervised hierarchical clustering algo-
rithm which organises its hierarchical structure adaptively 
and autonomously. The algorithm is illustrated using a 
three-dimensional dataset (selected for clarity of illustra-
tive demonstration) shown in Figure 6. The three-dimen-
sional dataset consists of five classes that are shown in 

five different colours. In this scenario, two classes are 
located closer together, while the other three classes are 
lumped together separately.

The modes of clustering and their respective 
strengths or precisions for a wide range of σ values, 
considering the entire data set, are shown below the 
3-D data set in Figure 6. The range of σ values is 
chosen according to the overall scatter of the dataset. 
This could be a trial and error approach for the first few 
stages of the algorithm and the range would remain 
the same for the rest of the stages. If the number of 
data points is N, there will exist a σ value which is 
large enough, where the number of clusters is N, and 
there will exist a σ value small enough, where the 
number of clusters is one. In any reliable clustering 
algorithm, if the number of classes equals the number 
of data points or if the number classes equal one, it 
does not convey any reliable information. The overall 
scatter of the data points determines these bounds. 
In other words, if the scatter of a particular dataset 
is small, it is not necessary to zoom out by a large 
amount in order to visualise it as a single cluster. In 
contrast, if the scatter of a particular dataset is large, 
it is essential to zoom out by a reasonable amount in 
order to visualise it as a single cluster.

Mode 1, with a maximum precision closer to one, is 
present in the data set for higher values of σ. The higher 
the value of σ, the higher the degree of affinity which 
explains the case where the data set is viewed from afar, 
where the distances between pixels (data points) seem 
very small, resulting in a single lumped cluster. When the 
value of σ is reduced, the level of zooming into the data 
set is increased. As expected, more clusters are present 
when zoomed in, which can be explained by the higher 
values of precision in modes 2 and 5. Mode 5 can be 
physically explained as there are five clusters in total 
while mode 2 is explained by the two lumped clusters 
available in the data space.
Out of the three modes of clustering identified, mode 

1 can be eliminated as it will always be present at higher 
values of σ with a high degree of precision. Out of the 
other modes available, mode 2 has the highest precision. 
Therefore, spectral clustering is applied to the data set 
with σ = 5, considering the Eigenvectors corresponding to 
the first two largest Eigenvalues of the Laplacian matrix 
of the data set. Then the clusters of pixels formed in the 
new space are identified using the k-means algorithm. 
The resulting super-clusters, when zoomed in, in the 
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original space, are shown on either side of the overall 
data set.
As the next stage of the hierarchical structure, the first 

super-cluster containing the red, green and black classes 
is selected and the procedure is repeated. The modes of 
clustering and corresponding values of precision are 
calculated based on their original three-dimensional 
data. Mode one is present as usual for high values of 
σ. Mode 2 is also present with a lower degree of preci-
sion, as the red and black classes are placed relatively 
closer together compared to the green class, resulting 
in two sub-clusters. However, mode three has the 
highest value of precision, which is due to the presence 
of the three different classes in the first umbrella cluster. 
Hence, spectral clustering is applied to the first umbrella 
cluster for the separation of three clusters with σ = 0.6. 
Each of the three clusters generated by the above stage 
is considered for the repetition of the same procedure 
as above and the resulting graph depicting the modes 
of clustering demonstrates that the clusters cannot be 
separated any further as the only mode available for a 
wide range of σ is one.

Next, the second super-cluster (light blue and dark 
blue) is analysed for its modes of clustering. Since mode 
2 is the only mode of clustering present, except for mode 
1 at high values of σ, spectral clustering is applied to the 
second umbrella cluster with σ = 0.7, in order to separate 
it into two sub-clusters.
The same procedure is applied to the two resulting 
clusters, to find out the modes of clustering, which indi-
cates that mode 1 is the only available mode. Hence the 
umbrella clustering algorithm for this data set ends at 
this point. Figure 7 shows the resulting adaptive hierar-

Figure 6. Illustration of the Umbrella Clustering algorithm.

Figure 7. Adaptive hierarchical structure for classification, 
based on the example considered.
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chical structure for classification, which classifies the five 
classes in the data set with 100 % accuracy.

Case studies
Case study 1
Combining the proposed modified LDA and the unsu-
pervised adaptive hierarchical clustering (Umbrella 
Clustering) algorithm, a classification process was 
carried out on the hyperspectral image data set of Pavia 
University. The training phase of case study 1 was carried 
out using a training sample of 900 pixels (100 from each 
class) in order to generate the hierarchical structure of 
clustering along with the corresponding σ values, and to 
find the transformations that perform the modified LDA 
at each stage of the hierarchy.

As depicted in Figure 8, mode 5 with the highest preci-
sion of 0.35 was chosen to perform spectral clustering 
on the training set, in the first stage of the hierarchy, 
with a corresponding σ value of 150. Note that mode 
1 can be neglected since it is a universal mode. Once 
spectral clustering was applied and the data space was 
transformed into a new space with enhanced separation 
among the five clusters identified, the k-means algo-
rithm was initialised with input parameter set to five 
for the number of clusters as per the prominent mode. 
Similarly, the process was repeated in all sub-clusters of 
the training sample until the most prominent mode was 
one for all values of σ. The overall flow of the hierarchical 

structure of the classification, upon the application of the 
developed algorithm on the training sample, is shown in 
Figure 9.

Case study 2
Using the umbrella novel methodology, a classifica-
tion process was carried out on the Image Database of 
Common Sri Lankan Spices and Adulterants. The training 
phase of case study 2 was carried out using a training 
sample of 1600 pixels (100 from each class) in order to 
generate the hierarchical structure of clustering along 
with the corresponding σ values, and to find the transfor-
mations that perform the modified LDA at each stage of 
the hierarchy.

As depicted in Figure 10, mode 2 with the highest 
precision of 0.32 was chosen to perform spectral clus-
tering on the training set, in the first stage of the hier-
archy, with a corresponding σ value of 28. Note that 
mode 1 can be neglected since it is a universal mode. 
Once spectral clustering was applied and the data space 
was transformed into a new space with enhanced sepa-
ration among the two clusters identified, the k-means 
algorithm was initialised with input parameter set to two 
for the number of clusters as per the prominent mode. 
Similarly, the process was repeated in all sub-clusters of 
the training sample until the most prominent mode was 
one for all values of σ. The overall flow of the hierarchical 
structure of the classification, upon the application of the 
developed algorithm on the training sample, is shown in 
Figure 11.

Results and discussion
The results of the case studies reveal the levels of accu-
racy, upon the application of the main algorithm in case 
study 1 followed by case study 2. While both the case 
studies were carried out in high-dimensional feature 
spaces of HSI data, case study 1 is based on a remote 
sensing application while case study 2 is aligned towards 
an agricultural or food engineering perspective.
The results of the hierarchical classification algorithm 
applied on the Pavia University data set, with the truth 
labels shown in columns and predicted labels in rows 
are presented in Table 1. It can be noticed that smaller 
fractions of meadows have been misclassified as trees 
and bare soil which can be justified by the two types of 
meadows (green and brown) present in the actual image 
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set, at the first stage.
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[Figure 1(a)]. On the other hand, portions of trees and 
bare soil have been misclassified as meadows, for the 
same reason. A few minor misclassifications in asphalt, 
gravel, bitumen and self-blocking bricks are also evident 
in the confusion matrix, due to their similarity in composi-
tion and colour.
The application of the Umbrella Clustering algorithm 
on the Pavia University dataset has resulted in five main 
super-clusters in the first stage, which are then clustered 
further into a number of sub-clusters, in a process of four 

stages. These numbers of clusters at different levels of 
zooming into the dataset were determined autonomously, 
based on the Eigen structure of the affinity matrix of the 
data set. The number of sub-clusters identified at each 
stage and the nature of the resulting clusters correspond 
to their physical properties.
In the first stage, shadows and painted metal sheets, 

which are the two classes that stand out from the rest, 
have been clustered separately. Shadows inherently 
reflect less compared to all other classes and painted 
metal sheets have a different chemical composition. 
It should also be noted that painted metal sheets 
have broken into two clusters due to the large vari-
ance present in the spectral signatures of the pixels 
containing them.

Trees and the green part of meadows which have 
similarities in both their colour and composition are 
combined together creating a separate umbrella cluster. 
Asphalt, gravel, bitumen, self-blocking bricks, bare soil 
and the brown part of meadows have combined together 
resulting in another umbrella cluster. This cluster contains 
black/brown material which consists of soil, minerals and 
other organic substances.
While the “green” cluster has broken down to its indi-

vidual components in the second stage when zoomed in, 
the black/brown cluster has separated further into three 
sub-clusters, the first being the black sub-cluster, the 
second being the brown sub-cluster and the third being 
the cluster in between.

Figure 9. Hierarchical structure for classification of the Pavia University data set.

Figure 10. Modes of clustering of the image dataset 
of Common Sri Lankan Spices and Adulterants, at first 
stage.
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The first sub-cluster contains asphalt, part of the 
gravel and bitumen which are made of rocks. The second 
contains part bare soil and part meadows which have a 
mixed composition of soil and withered plants. The third 
class contains part gravel, self-blocking bricks and part 
bare soil. This is the sub-cluster containing a composi-
tion of soil and rocks in it. The final stage classifies all 
the pixels under their respective classes, identifying no 
further sub-clusters.

The results of the proposed algorithm have been 
compared with some of the well-known classification 
algorithms, both supervised and unsupervised, related 
to hyperspectral image classification in Table 2. The 
highest classification accuracies of all classes are marked 
in bold. These algorithms include Principal Component 
Analysis (PCA),6 LDA,8 Locally Linear Embedding 
(LLE),10–13 Feature Space Discriminant Analysis (FSDA),15 
Nonparametric Feature Extraction (NFE),17 Simultaneous 
Orthogonal Matching Pursuit (SOMP),23 Simultaneous 

Subspace Pursuit (SSP)23 and Spectral Clustering. FSDA is 
an algorithm which tries to produce features that are as 
different from each other as possible while increasing the 
separability between classes. The reduced dimensional 
data is then classified using SVM in this algorithm. NFE is 
a modification to LDA, weighted according to the degree 
of belonging of a data point to a particular class (weight 
calculated by the Euclidean distance to the class mean 
from the data point). The transformed data is classified 
using the SVM classifier in this algorithm. SOMP tries to 
decompose the pixel spectrum to a sparse linear combi-
nation of class signatures in a lower dimensional space 
while incorporating spatial information. Sparsity level and 
weighting factor are two of the user inputs used in SOMP.
Apart from the main contribution of generating the 

hierarchical structure of classification autonomously, 
the Umbrella Clustering algorithm has the advantage 
of producing accurate results using a smaller amount of 
training data, compared to what is used in state-of-the-

Figure 11. Hierarchical structure for classification of the dataset of Common Sri Lankan Spices and Adulterants.
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art algorithms. This is a major advantage in many practical 
situations. A comparison of accuracies among a number 
of state-of-the-art algorithms with a different number of 
training samples is illustrated in Figure 12. It shows that 
Umbrella Clustering performs well with a limited number 
of training samples compared to the other algorithms 
considered. It should be noted that, for all the methods 
illustrated in Figure 12, external data had been utilised in 
the validation process in order to generate results.

Machine learning algorithms have two types of param-
eters as fixed parameters and free variables. Fixed param-
eters are coded into the program. The free variables 
consist of both the user input variables and trainable 
parameters. The user input variables are input manually 
(thus they are subjective) and the trainable parameters 
are learned from the training data and used on the test 
data. The proposed algorithm has only one user input—
the range of sigma values to sweep through. In contrast, 
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Asphalt 4710 1 46 0 1 9 42 8 0 4817
Meadows 15 15939 3 442 0 705 0 26 0 17130
Gravel 462 4 1943 0 0 0 9 8 0 2426
Trees 0 1362 0 2598 0 5 0 0 0 3965
Metal sheets 38 0 0 4 1325 76 0 0 0 1443
Bare soil 31 710 0 5 2 3626 0 4 0 4378
Bitumen 822 5 17 3 3 521 1138 33 0 2542
Bricks 548 627 30 0 14 87 141 3663 0 5110
Shadows 5 1 0 12 0 0 0 0 947 965
Total pixels 6631 18649 2039 3064 1345 5029 1330 3742 947 42776

Table 1. Confusion matrix of classification—Case Study 1.

Class

Accuracy (%) (to the nearest integer)

PCA LDA LLE FSDA NFE SOMP SSP
Spectral 

clustering
Umbrella 
Clustering

Asphalt 82 65 57 60 73 59 70 41 71
Meadows 63 73 77 66 73 78 72 46 81
Gravel 79 49 50 67 73 84 74 53 93
Trees 93 79 92 91 89 97 95 90 85
Metal sheets 95 98 58 100 100 91 100 36 99
Bare soil 61 56 65 50 73 77 87 42 56
Bitumen 58 50 90 88 90 99 90 92 86
Bricks 40 55 62 76 76 89 90 96 99
Shadows 100 99 100 100 100 92 90 100 100
Overall 68 68 71 78 82 79 82 55 80

Table 2. Comparison of accuracy levels (class wise and overall) between different classification methods and the proposed 
method—Case Study 1.



14	 Adaptive Hierarchical Clustering for Hyperspectral Image Classification: Umbrella Clustering

the neural-network-based algorithms have multiple such 
parameters (these solutions require updating the layer 
sizes, number of kernels etc. according to the dataset 
which requires user input/manual calibration). Having a 
lower number of user inputs makes the algorithm more 
versatile and the results less subjective.
The number of trainable parameters has a correlation 

with the complexity of the model and the amount of 
information that could be extracted from the dataset. For 
neural networks, this is the count of neuron weights28 
(around 80,000) and for linear classifiers, this is the 
number of the elements of the transformation matrices 
generated. Both those types of algorithms have fixed 
numbers of trainable parameters. The proposed solution 
has two types of trainable parameters—the elements 
of the LDA transformation matrices, sigma values for 
zooming into the dataset, cluster means of training data’s 
labelled classes and the overall hierarchical structure. 
The number of trainable parameters is not fixed for the 
algorithm since the hierarchical structure is generated 
according to the training dataset. A variable number of 
trainable parameters makes the algorithm versatile over 
different scenarios (datasets and intended classifica-
tions) since the complexity of the model and the amount 

of information extracted is adapting according to the 
scenario.

No method is globally superior to any other method 
and different methods have different strengths and 
weaknesses. Deep Learning will not require supervisory 
information but will consume a significant amount of 
training resources. However, the proposed method, as 
opposed to a purely LDA method, would not require that 
much supervisory information, yet a certain amount of 
supervisory information is required due to the spectral 
clustering aspect of it. Hence the comparative analysis 
does not provide a statement on the superiority of a 
method as opposed to another, but concludes on the 
different utilisation of training resources, which is signifi-
cant for deep learning, whereas deep learning would 
continue to be superior in terms of the requirement of 
supervisory information.

The graph in Figure 12 demonstrates a universally 
accepted behaviour of algorithms, which is that for 
example, the deep learning methods will outperform 
all the other methods when given a reasonable amount 
of training information. However, if the situation lacks 
training resources, this has shown the deterioration of 
the said algorithms. However, algorithms such as the 
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proposed algorithms, which require a minimal amount 
of supervisory information while also having a minimum 
requirement of training information, will be superior 
under such circumstances.
In order to assess the versatility of the Umbrella 

Clustering algorithm, it was applied to the dataset of 
common Sri Lankan spices in case study 2. The illustra-
tion of the hierarchical structure for the classification of 
this data set, in Figure 11, shows that the structure is in 
line with human perception. The two super-clusters in 
the first stage succeed in separating “Wheat Flour” as 
it directly shows a dissimilarity with the other classes. In 
the next stage, similarly “Tartrazine” is separated due to 
the same reason. In the following stage, the sub-cluster 
containing the spices (Pepper, Chili, Turmeric and Curry 
powder) are taken into consideration. Applying the self-
organising hierarchical method, this sub-cluster is divided 
into two more clusters—one containing pepper and curry 
powder and the other containing chili and turmeric. This 
again is in line with human perception with respect to 
colour and texture. The algorithm proceeds further to 
result in the hierarchical classification shown in Figure 11.

Conclusion
Hyperspectral image processing is an emerging tech-
nique used for feature detection and classification. This 
stands out from other image processing techniques due 
to its ability to identify fine features of an image which 
are not detectable by other image processing techniques.
The classification algorithm introduced in this paper is 

based on spectral clustering, which is applied to hyper-
spectral image data in a hierarchical manner. Before 
implementing spectral clustering, a modified LDA method 
is also introduced in order to increase between-class 
separability and decrease within-class scatter at each 
stage of the hierarchy. The algorithm organises the hier-
archical structure of clustering autonomously considering 
the positional patterns of data points. This is more effec-
tive than single-staged spectral clustering, as shown in 
the comparative analysis in the results section.
The hierarchical classification makes sense in a physical 
aspect as well, resulting in large clusters combining data 
points belonging to different classes with similar phys-
ical properties. Results of each stage can be interpreted 
based on their physical characteristics. The splitting of a 
few of the original classes into different umbrella clusters 

conveys large physical disparities within those classes 
which were not available in the ground truth of the image. 
It also enables the identification of such high variance 
classes with large intra-class distance.
Umbrella Clustering has the ability to produce high 

levels of accuracy using a smaller number of training 
samples, compared to the state-of-the-art algorithms as 
shown in Figure 12. It also has the advantage of having 
only one user input and one trainable parameter which 
limits the degrees of freedom of the algorithm, resulting 
in improved efficiency.

The algorithm proposed in this paper has been able to 
reach a class-wise accuracy of more than 70 % for all the 
classes in the Pavia University dataset, with four classes 
being classified with an accuracy level greater than 93 %.

In order to assess the versatility of the proposed 
Umbrella Clustering algorithm, it was applied to the 
dataset of Common Sri Lankan Spices and Adulterants, 
which consists of 16 classes that are different. The 
resulting adaptive hierarchical structure was in line with 
human perception, and the results of classification were 
comparably high, compared to recently published work.

Based on the results of the case studies, it could be 
concluded that the proposed Umbrella Clustering algo-
rithm develops its hierarchical clustering structure auton-
omously, which coincides with the human perception 
and performs well in terms of accuracy. The proposed 
algorithm also has the ability to adapt to different types 
of datasets and generate the hierarchical structure of 
clustering autonomously, confirming its versatility in 
implementation.
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