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Most plastics need to incorporate flame retardants to meet fire safety standards requirements. The amount and the type of flame retardants can
differ, so that in waste plastics a large variety of polymers and flame retardants can be found. The recycling of plastics containing flame retardants
is increasing. However, only plastics of the same polymer type and the same additive content can be recycled together. Three models based on
different chemometrics techniques applied to hyperspectral imaging in the near infrared range were developed [partial least square-discriminant
analysis, decision tree (DT) and hierarchical model (HM)]. Optimal results were obtained for all classification techniques. HM shows the highest
error at all levels due to the noisy spectra of the black plastics. However, DT classification gave outstanding results, considering that the sensitivity
was higher than 0.9 in all cases. Thus, the application of DT with hyperspectral imaging could be used to sort plastic samples with respect to the

type of polymer and the flame retardant used with a high degree of accuracy in an automated way. These findings are highly valuable for the plastic

and waste management industries.

Keywords: waste recycling, plastics recycling, NIR hyperspectral imaging, polymer, flame retardants, decision tree, hierarchical classification,
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Introduction

Most plastics need to incorporate flame retardants
(FR) to meet fire safety standard requirements. FRs are
organic compounds used to increase the resistance to
ignition, reduce flame spreading, suppress smoke forma-
tion and prevent a polymer from dripping.! The amount
and the type of FRs can differ, so that in waste plas-
tics a large variety of polymers and FRs can be found.
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Among all, Brominated FRs (BFR) are cost-effective and
offer a high degree of processability, making them the
most commonly used FRs in plastics. In Europe, the recy-
cling of polymers from all categories is increasing, which
includes plastics containing FRs. However, only plastics
of the same polymer type and with a close match in addi-
tive content can be recycled together.
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Hyperspectral Imaging and Chemometrics for Classifying Plastics with Brominated Flame Retardants

The identification of BFRs in plastics has been success-
fully accomplished using many methods, such as Raman
spectroscopy,’ laser-induced breakdown spectrometry
(LIBS),® X-ray fluorescence (XRF)* and chromatography.”
However, many of these methods are slow, expensive
and difficult to implement in a real-time framework,
which make them unsuitable for automated sorting. On
the other hand, near infrared (NIR) spectroscopy is exten-
sively used for automated sorting due to its fast scanning
abilities and relatively low cost.

Hyperspectral imaging (HSI) is an imaging technique
that started in the 1970s with applications mainly in
remote sensing.®’ In the last decade, this technique has
been applied in many other disciplines.® > The main
feature of this technique is its ability to measure a whole
spectrum for every single pixel in which the image (i.e.,
the sample) is divided.'®'” The interest in HSI has recently
grown because of the faster, more reliable and robust
evolution of the optical devices available and the imple-
mentation of powerful, accurate and robust computer
vision algorithms for processing those.*®1?

HSI is inherently linked to data analysis, especially,
to chemometrics techniques. Thus, the success of HSI
cannot be understood without referring to the implemen-
tation of powerful algorithms to handle all data generated
for a single image. Chemometrics is a well-known disci-
pline that allows the extraction of information initially
hidden in the data in a multivariate way. Many reviews
have been published pointing out the main multivar-
iate or statistical methods that can be applied in HSI for
different purposes.’®~?® However, sometimes it becomes
cumbersome to know exactly which multivariate method
is the most appropriate for every single purpose. Among
the main chemometrics techniques for classification
purposes, partial least square-discriminant analysis (PLS-
DA), decision trees (DT) and artificial neural networks
(ANN)?*27 are very well known.?® Recent studies have
shown the good performances in classification of algo-
rithms based on tree structures such as DT or random
forest,?%2730 in comparison with classical techniques of
classification such as K-NN, rules based systems (RBS),
ANN or deep learning methods.

Therefore, a fast and reliable method to identify and
distinguish both the polymer and the contained FRs is
proposed in this manuscript by using NIR-HSI together
with dedicated classification models. This approach can
be the perfect methodology for real-time, automated
sorting of plastics with critical additives, selecting and

testing the best classification model on real samples of
plastics in order to implement an economically reliable
recycling process that meets the major requirement of
the plastic industry.

Material and methods
Materials

The plastics used in this study were kindly provided by the
INNOSORT consortium (http:/innosort.teknologisk.dk/).
Two different kinds of plastics were supplied: acrylonitrile
butadiene styrene (ABS) and polystyrene (PS). For each
one, two versions were analysed: Natural and Black (with
the addition of 5% of carbon black). A reference sample
for each polymer (without BFRs addition) was analysed
and labelled as REF. The remaining samples were doped
in the manufacturing process with 10 % of different BFRs
according to the corresponding legislation. The types
of BFR were: 1,2,5,6,9,10-hexabromo-cyclododecane
(labelled as HBCD), Pentabromopheny! ether (labelled as
deca-BDE) and 3,5-tetrabromobisphenol A (labelled as
TBBPA). These plastics were produced in a disk shape
(of around 50 mm of diameter and 3mm thickness). For
each type of plastic, two replicates were provided, one of
them for calibration and the other one for testing (Table
1). Figure 1 shows the false colour image of the samples
of plastics (Figure 1A), the use of these images for calibra-
tion (black samples) or test (dark grey samples) purposes
(Figure 1B) and the identification of each group and sub-
group of plastics (Figure 1C). A false colour image is a
representation of the hyperspectral image in which the
spectra are divided into three intervals. Then, the average
value of the spectral signal is calculated for each interval
at each pixel. Therefore, a false RGB can be constructed
by mimicking each interval as one of the RGB channels.
This is a qualitative, but very valuable, way of displaying
hyperspectral images. Real samples from commercial
sources were used as an external validation set. These
were blind random pieces of different types of plastic
and from different brands (Figure 2A). The composition
of these real plastics are specified in Figure 2B.

Hyperspectral imaging

Images obtained from near infrared reflectance spectros-
copy hyperspectral imaging (NIRS-HSI) were collected
with the UmBio Inspector hyperspectral camera
(UmBio, AB, Umea, Sweden) in the wavelength range
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Table 1. Plastic types (ABS, Acrylonitrile Butadiene Styrene
and PS, Polystyrene), versions (Natural and Black) and flame
retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo
cyclododecane; Deca-BDE, Pentabromophenyl ether; and
TBBPA, 3,5-Tetrabromobisphenol A) used in the calibration
and test set.

Flame retardants
REF

HBCD
Deca-BCD
TBBPA
REF

HBCD
Deca-BCD
TBBPA
REF

HBCD
Deca-BCD
TBBPA
REF

HBCD
Deca-BCD
TBBPA

Plastic type | Version

Natural

ABS

Black

Natural

PS

Black

of 1100-2250nm with a spectral resolution of 4.85nm
(115bands). The camera was placed at a right angle with
respect to the sample (90°). The samples were illuminated
with diffuse white light at an angle of 45° to the sample.
The final pixel resolution was 300 um. This configuration
had been evaluated and optimised previously®! and the
calibration of the camera was performed by subtracting
the ratio between the full reflectance of a Spectralon
plate and the dark current collected with the objective
closed according to the literature.®?3°

The hyperspectralimage data processing was performed
using HYPER-Tools,** an in-house library working under
MATLAB (The Mathworks, Inc., Natick, Massachusetts,
USA).

Experimental work-flow

The spectra were pre-processed to remove outliers and
noise (first derivative Savitzky-Golay®®). The training
samples were evaluated and classified by applying three
different classification models in a pixel by pixel fashion
and analysing sample by sample. Thus, once the best
classification model was obtained, this model was evalu-
ated on the NIRS-HSI of the real samples of plastic in

order to evaluate the polymers, the versions and the
BFRs doping the plastics of these real samples.

Classification models

Two different datasets were obtained, one for calibra-
tion (CAL) and the other for testing the models (TEST).
Therefore, to create the calibration model, a matrix X
(MxN) where M is the number of spectra and N is the
number of wavelengths, and the corresponding Y matrix
containing the identity belonging to each class,®® are
needed.

Partial least square-discriminant analysis

Partial least square (PLS)?>® together with discriminant
analysis (PLS-DA) is a supervised discriminant method
that predicts whether a sample belongs to a specific class.
PLS-DA was performed in the PLS-toolbox (Eigenvector
Research Inc., Manson, WA, USA) for MATLAB (The
Mathworks Inc., Natick, Massachusetts, USA). This seems
avery complicated combination of software. Nevertheless,
the two of them (HYPER-Tools and PLS-toolbox) work
under the MATLAB environment, and all their utilities
can be used in an automated way by means of in-house
generated scripts.

Decision trees

DT is a decision modelling tool that graphically displays
the classification process of a given input for given
output class labels.®® This method is one of the learning
algorithms that generate classification models in the form
of a tree structure. It is based on the “divide and conquer”
strategy.®” Data subsets were created by decomposing
the whole dataset into smaller datasets. The final model
is a tree structure with decision nodes and leaf nodes.

DT was applied in this study by using the free software
Waikato Environment for Knowledge Analysis (WEKA)
(http:/www.cs.waikato.ac.nz/ml/weka; last accessed
May 2018).

The J48 decision tree-inducing algorithm is a WEKA
implementation of the well-known C4.5 decision tree.*°
According to Anyanwu and Shiva*! and Priyam et al.,*?
J48 provides better accuracy and efficiency than other
decision tree algorithms. Therefore, J48 was used as the
DT in the present study. A confidence factor of 0.5 and
minimum bucket size of 30 were applied.?**® The bucket
size is the minimum number of samples that can be classi-
fied in any leaf of the DT. Usually this value should be one-
third of the batch size, which is the number of instances
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(Natural or Black) and type of flame retardants.

Ips ABS

MATURAL |BLACK

REF REF
L3 ABS ABS |Ps 3
NATURAL (BLACK BLACK MATURAL |NATURAL
DECA-BDE [HBLD DECA-BDE [HBCD REF
ABS PS5 ABS PS ABS
|BLaCk NATURAL |BLACK  |MATURAL |BLACK
TRBPA DECA-BDE |DECA-BDE |TB8#A  |TBBPA
3 PS [ ABS ABS
BLACK. NATURAL |NATURAL |BLACK BLACK,
REF HELD TEBPA REF HELD
=3 ABS Ps ABS PS
BLACK MATURAL |BLACK MATURAL |BLACKE
DECA-BDE (DECA-BDE |DECA-BDE |REF TEBPA
PS ABS ABS ABS PS
BLACK NATURAL |NATURAL |MATURAL |BLACK
HBCD BEPA REF HBCD HBCD
ABS ABS 3 ABS
NATURAL NATURAL |BLACK NATURAL
DECA-BDE TEBPA  |REF HBCD

Figure 1. Calibration and test set of plastics for this study. A) False colour image of the plastics. B) Calibration (black)
and Validation (grey) samples of plastics. C) Description of the plastic samples, type of plastics, version of these plastics

Figure 2. A) False colour image of the real samples of plastics. B). Composition of the real samples of plastics: P1 (ABS-
Black-HBCD), P2 (ABS-Black-REF), P3 (ABS-Natural-HBCD), P4 (ABS-Natural-REF), P5 (PS-Black-Deca-BDE), P6 (PS-
Black-TBBPA), P7 (PS-Natural-REF) and P8 (PS-Natural-TBBPA).




D. Caballero, M. Bevilacqua and J.M. Amigo, J. Spectral Imaging 8, a1 (2019)

)

to process if batch prediction is being performed. Since,
the batch size is 100 for the DT, 30 is an appropriate size
for the minimum bucket size.

Hierarchical model of classification

A hierarchical model for classifying the plastic samples
was developed in the present study. In each level of
classification, PLS-DA was applied as the classification
technique.®”

A hierarchical model of classification is a decision tool
that maps the input sample as a function of the output
categories. This classification occurs first on a low-level,
from highly specific characteristics of the input samples.
The classifications of the individual sample are combined
systematically, and the sample is classified on a higher
level iteratively until one output is produced.**** This
hierarchical model was performed in the PLS-toolbox
(Eigenvector Research Inc., Manson, WA, USA) for
MATLAB (The Mathworks Inc., Natick, MA, USA).

Statistical assessment of the results

The statistical assessment of the classification perfor-
mance can also be carried out by using different classi-
fiers.*>"* In our case, the model was statistically eval-
uated by using the sensitivity (Equation 1), specificity
(Equation 2) and class error (Equation 3) for the calibra-
tion (CAL) and the test (TEST) sets:

Sensitivity =

TP+FN

N
Specificity =————— 2
P v FP+TN @
Sensitivity + Specificity
2

Class error =1-

In the equations, TP and TN stand for True Positive
and True Negative, respectively, accounting for the
pixels that have been correctly assigned as belonging
(TP) or not belonging (TN), to a specific class. FP and
FN stand for False Positive and False Negative, respec-
tively, accounting for the pixels that have been wrongly
assigned as belonging (FP) or not belonging (FN), to a
specific class.

Results and discussion

The pre-processed spectra from the different samples
are shown in Figure 3. Differences can be seen among

the spectra of different type of polymers, ABS (green
spectra) and PS (red spectra). Figure 3B shows differ-
ences among the spectra with different versions of
plastic, Black (red spectra) and Natural (green spectra).
Figure 3C shows differences among the spectra with
different FRs used in the plastic, HBCD (green spectra),
TBBPA (yellow spectra), Deca-BDE (red spectra) and
Reference (blue spectra).

Results from PLS-DA

Table 2 shows the statistical results of the classifica-
tion models based on PLS-DA built upon the spectral
information from each pixel (i.e., classifying pixel by
pixel, independently). The best results were obtained
for classifying between Natural and Black versions of
the plastics, since the classification model obtained
a perfect percentage of classification. Good results
were obtained for classifying between ABS and PS
plastics, since the sensitivity and specificity were
higher than 0.75% for the calibration and test sets.
For the classification of the FRs used in the plastics,
only deca-BDE and TBBPA achieved sensitivity and
specificity higher than 0.75% for both calibration and
test set. REF and HBCD classes reached sensitivity
lower than 0.75 in both sets.*® The reason for this
performance could be for the high similarity between
the spectral features characterising the FRs in the
ABS and PS plastics.*”

The previous results obtained pixel by pixel can then
be summarised to classify per sample (i.e., per disk of
plastic). In this case, the classification of each sample
will be based on the most representative type of plastic,
version of plastic and FRs present among the pixels of
each specific sample. Table 3 shows these results. The
results showed a similar performance of this approach
with respect to the one classifying pixel by pixel. The
best results were reached for classifying between Black
and Natural plastic versions, with all samples classified
correctly. For the type of plastic, good results were
achieved, except for one PS sample that was wrongly
classified as ABS. For the classification among FRs, five
samples out of sixteen were wrongly classified.

These results show the ability of linear classification
to discriminate between types of plastic and versions of
plastic with HSI. Nevertheless, this technique presents
problems for discriminating among the FRs added to the
plastic, mainly due to the similarity among the spectra of
the different FRs.*”
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Table 2. Results per pixels for the calibration (CAL) and test (TEST) set of plastics using PLS-DA as the chemometrics technique
for classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and
flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BD, Pentabromophenyl ether; and

TBBPA, 3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants

ABS PS NATURAL | BLACK REF HBCD Deca-BDE TBBPA
Sensitivity (CAL) 0943 | 0.878 1.000 1.000 0.539 0.709 0.822 0.833
Sensitivity (TEST) 0941 | 0.876 1.000 1.000 0.527 0.660 0.760 0.801
Specificity (CAL) 0.878 | 0943 1.000 1.000 0.874 0.994 0.869 0.897
Specificity (TEST) 0.876 | 0.941 1.000 1.000 0.851 0.987 0.860 0.884
Class error (CAL) 0.08%9 | 0.089 0.000 0.000 0.294 0.148 0.154 0.134
Class error (TEST) | 0.091 | 0.091 0.000 0.000 0.311 0.176 0.189 0.157

Table 3. Results per sample for the calibration (CAL) and test (TE

ST) set of plastics using PLS-DA as the chemometrics tech-

nique for classifying for the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and
Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl

ether; and TBBPA, 3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants

ABS PS NATURAL | BLACK REF HBCD Deca-BDE TBBPA
Sensitivity (CAL) 1.000 | 0.875 1.000 1.000 0.500 0.750 0.750 0.750
Sensitivity (TEST) 1.000 | 0.875 1.000 1.000 0.500 0.750 0.750 0.750
Specificity (CAL) 0.875 1.000 1.000 1.000 1.000 0.833 0.917 0.833
Specificity (TEST) 0.875 1.000 1.000 1.000 1.000 0.833 0.917 0.833
Class error (CAL) 0.063 | 0.063 0.000 0.000 0.250 0.208 0.167 0.208
Class error (TEST) | 0.063 | 0.063 0.000 0.000 0.250 0.208 0.167 0.208

Results on decision trees

From all the classification techniques based on tree struc-
tures, DT was selected in this work as the classification
technique, since DT is one of the simplest tree structures
and J48 DT is one of the most efficient algorithms.*1#?

Table 4 shows the statistical results of the classifica-
tion models based on DT using the pixel information one
by one. For classifying the types of plastics, very good
results were achieved (sensitivity and specificity higher
than 0.97 for the calibration sets and higher than 0.96
for the test set). In general, better results were reached
for PS than ABS. For classifying the versions of the plas-
tics, very good results were also obtained (sensitivity and
specificity higher 0.99 for calibration and test sets). For
the FRs, very good results were reached for the calibra-
tion and test sets (specificity higher than 0.96, and sensi-
tivity higher than 0.94 for calibration set and higher than
0.93 for test set). Moreover, very good results for the
class error were achieved for all cases (lower than 0.05,
for the calibration and test sets).

Table 5 shows the results for the classification of the
plastics per samples, i.e. classifying disk by disk, as a
function of type of plastic, version of plastic and FRs
present in the samples. In this case, this approach pres-
ents perfect results for all the classification problems.

Results on hierarchical model

A hierarchical classification model was performed. Figure
4 shows the hierarchical classification model described.
For that, based on the results obtained by the single
PLS-DA model (Table 2 and Table 3), the best results
were obtained when discriminating between the two
versions of the plastics (Natural and Black). For this
reason, the classification of the plastics by their versions
was chosen as the first PLS-DA model (P1). Once the
plastics had been classified as Natural or Black, the next
step was to classify them as a function of their polymer
(ABS and PS). This step implied two PLS-DA models, one
of them for Natural plastics (P2) and the other for Black
plastics (P3). At this stage, we had classified four groups
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Table 4. Results per pixel for the calibration (CAL) and test (TEST) set of plastics by using DT as the chemometrics technique for
classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and flame
retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl ether; and TBBPA,
3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants

ABS PS NATURAL | BLACK REF HBCD Deca-BDE TBBPA
Sensitivity (CAL) 0.976 0.977 0.997 0.998 0.943 0.945 0.965 0.959
Sensitivity (TEST) | 0.962 0.964 0.992 0.993 0.937 0.938 0.958 0.951
Specificity (CAL) 0.977 0.976 0.998 0.997 0.973 0.986 0.988 0.991
Specificity (TEST) | 0.964 0.962 0.993 0.992 0.968 0.980 0.983 0.985
Class error (CAL) 0.024 | 0.024 0.003 0.003 0.042 0.035 0.024 0.025

Table 5. Results per sample for the calibration (CAL) and test (TEST) set of plastics by using DT as the chemometrics technique
for classifying for type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and
flame-retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl ether; and
TBBPA, 3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants

ABS PS NATURAL | BLACK REF HBCD | Deca-BDE TBBPA
Sensitivity (CAL) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sensitivity (TEST) | 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (CAL) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (TEST) | 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class error (CAL) 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sample
Black Natural
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= “Ir
ﬂ E|
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E| Figure 4. Hierarchical model developed for

classifying plastic samples with FR additives.
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of plastics (NATURAL-ABS, NATURAL-PS, BLACK-ABS
and BLACK-PS). Thus, the next step was to classify as a
function of the FRs. For the group NATURAL-ABS, we
could not build a hierarchical model able to discriminate
among all the FRs at once. We had to insert an interme-
diate step with a model discriminating between HBCD,
TBBPA and the remaining FRs (Deca-BDE and REF) (P4).
Then, these last samples were classified based on the
FRs content, in a following ad hoc step (P8). A similar
approach was adopted for the group NATURAL-PS
where the same problems as in the previous case were
encountered. As previously explained, the classification
was divided into two subsequent steps, the first one
discriminating among HBCD, TBBPA and the remaining
FRs (Deca-BDE and REF) (P5), and the second dividing
these remaining samples among Deca-BDE and REF
(P9). In the case of BLACK-ABS samples, the proposed
model discriminated all samples as a function of the
FRs at once (P6). Finally, for the BLACK-PS samples,
our PLS-DA model discriminated the plastics at first in
two sub-groups as a function of FRs contained (P7):
one of them with the samples containing HBCD and
Deca-BDE as FR, and the other one with the samples
containing TBBPA and REF. In both cases, a subsequent
PLS-DA model was carried out, to discriminate between
HBCD and Deca-BDE (P10) and between TBBPA and
REF (P11).

Table 6 shows the statistical results of our hierarchical
classification model applied to the data pixel by pixel, and
Table 7 shows the same approach applied per sample, i.e.
classifying disk by disk.

Very good results (Sensitivity > 0.750)*® was obtained
for the classification of the plastics according to their
version (BLACK and NATURAL) (P1) in both cases (Table
6 and Table 7). The classification as a function of the
polymer (ABS and PS) (P2 and P3) led to good classifica-
tion results with Sensitivity higher than 0.750,%¢ both
for the classification by pixel (Table 6) and by sample
(Table 7).

Forclassifyingthe fourclasses (BLACK-ABS, BLACK-PS,
NATURAL-ABS and NATURAL-PS) according to the
specific FRs (P4, P5, P6, P7, P8, P9, P10 and P11), better
results were achieved for the Natural plastics than for
the Black plastics. For the Natural versions of the plas-
tics (P4, P5, P8 and P9), good results of classification
were achieved (Sensitivity > 0.900). However, for the
Black versions of the plastics (P6, P7, P10 and P11), the
results were not very satisfactory (Sensitivity >0.500).

This fact could be due to the high noise present in
the spectra of the Black plastics where light scattering
phenomena occur. This is also true for some of the
Natural plastics that appear black due to particular kind
of FR used, even if no carbon black was used for their
preparation.”®>!

Comparing the different models developed in this study,
the best results were obtained for the model based on DT
(Table 4 and Table 5) following by the results of the hier-
archical classification model (Table 6 and Table 7) and the
worst results were obtained for PLS (Table 2 and Table 3).
These results are in reasonable agreement with previous
studies?®?”9 that showed the best classification results
for tree-structure-based models and the accuracy of clas-
sification techniques based on tree structures.

Other studies aimed at classifying plastics®?>* showed
similar performances to the PLS-DA and hierarchical clas-
sification model results, therefore inferior to the ones
obtained here with the DT approach.

Application on real samples

Once the best classification model was determined, this
was applied to the real samples, namely, the different
waste plastics of different common brands (Figure 2A), in
order to evaluate the polymer used for these plastics, and
whether they contained carbon black and FRs (Figure
2B). This is an important step, since this model would
be used in recycling processes for the waste recycling
and plastic industries that will rely on its accuracy for
economic benefits.

At first, the classification model developed in this study
was applied on the real samples in order to discrimi-
nate between the polymers of the plastics (ABS and PS).
Figure 5A illustrates this classification.

The DT model classified the real samples of plastics into
ABS samples (blue samples) and PS samples (red samples)
correctly. The DT model, classified the different samples
and applied the classification model per whole sample.

After that, the DT classification model was applied on
the real samples to discriminate between the version of
the plastics (BLACK and NATURAL), i.e. for classifying
the plastics as a function of whether the plastics contain
carbon black. Figure 5B shows this classification.

In Figure 5B, we can see how the DT model classified
the real samples of plastics among Black samples (red)
and Natural samples (blue). In addition, in this case, the
DT model classified the different samples as a whole, and
not pixel by pixel, and the results were 100 % correct.
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Table 6. Results per pixel for the calibration (CAL) and test (TEST) sets of plastics using hierarchical classification model as

the chemometrics technique for classifying for the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene),
version (Natural and Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE,
Pentabromophenyl ether; and TBBPA, 3,5-Tetrabromobisphenol A).

Classes

Sensitivity
(CAL)

Sensitivity
(TEST)

Specificity
(CAL)

Specificity
(TEST)

Class error
(CAL)

Class error
(TEST)

P1

Natural and Black

1.000

1.000

1.000

1.000

0.000

0.000

P2

Natural = ABS
and PS

1.000

1.000

1.000

1.000

0.000

0.000

P3

Black — ABS and
PS

0.923

0.903

0.923

0.903

0.077

0.097

P4

Natural —
ABS — HBCD,
TBBPA and
DecaBDE+REF

0.951

0.946

0.973

0.972

0.038

0.041

P5

Natural —

PS — HBCD,
TBBPA and
DecaBDE+REF

0.929

0.916

0.953

0.948

0.059

0.068

P&

Black - ABS —
HBCD, TBBPA,
DecaBDE and
REF

0.837

0.789

0.895

0.833

0.134

0.189

P/

Black = PS
— HBCD +
DecaBDE and
TBBPA + REF

0.924

0.916

0.924

0.916

0.076

0.084

P8

Natural = ABS
— DecaBDE and
REF

1.000

0.994

1.000

0.994

0.000

0.006

%

Natural - PS —
DecaBDE and
REF

0.979

0.972

0.979

0.972

0.021

0.028

P10

Black = PS
— HBCD and
DecaBDE

0.892

0.882

0.892

0.882

0.108

0.118

P11

Black = PS —
TBBPA and REF

0.976

0.976

0.976

0.976

0.024

0.024

Finally, Figure 5C illustrates the DT classification model
applied to the real samples to discriminate between the
specific FRs used for doping the plastic (HBCD, TBBPA,
Deca-BDE and REF).

For this task, again, the DT model analysed the real
samples of plastics as whole, not pixel by pixel, and it clas-
sified them among REF samples (blue samples), TBBPA

samples (yellow samples), Deca-BDE (green samples)
and HBCD samples (red samples). In both cases, we can
observe that the FRs used by the plastic industries are
in accord with the fire safety standard required. Once
again, the DT model classified the different samples
100% correctly as a function of the FRs for doping the
plastics.
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Table 7. Results per sample for the calibration (CAL) and test (TEST) set of plastics using hierarchical classification model as the
chemometrics technique for classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version
(Natural and Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Penta-
bromophenyl ether; and TBBPA, 3,5-Tetrabromobisphenol A).

Classes

Sensitivity
(CAL)

Sensitivity
(TEST)

Specificity
(CAL)

Specificity
(TEST)

Class error
(CAL)

Class error
(TEST)

P1

Natural and Black

1.000

1.000

1.000

1.000

0.000

0.000

P2

Natural = ABS
and PS

1.000

1.000

1.000

1.000

0.000

0.000

P3

Black — ABS and
PS

0.875

0.750

0.875

0.750

0.125

0.250

P4

Natural —
ABS — HBCD,
TBBPA and
DecaBDE+REF

1.000

0.750

1.000

0.750

0.000

0.250

P5

Natural —

PS — HBCD,
TBBPA and
DecaBDE+REF

1.000

0.750

1.000

0.750

0.000

0.250

P6

Black > ABS —
HBCD, TBBPA,
DecaBDE and
REF

0.750

0.500

0.750

0.500

0.250

0.500

P/

Black = PS
— HBCD +
DecaBDE and
TBBPA + REF

0.500

0.250

0.500

0.250

0.500

0.750

P8

Natural = ABS
— DecaBDE and
REF

1.000

0.500

1.000

1.000

0.000

0.000

P9

Natural = PS —
DecaBDE and
REF

1.000

1.000

1.000

1.000

0.000

0.000

P10

Black = PS
— HBCD and
DecaBDE

0.500

0.500

0.500

0.500

0.500

0.500

P11

Black = PS —
TBBPA and REF

0.500

0.500

0.500

0.500

0.500

0.500

Conclusions
Three classification models were developed in this
study based on the combination of chemometrics

techniques and HSI. All, these methods were suit-

able for classifying the plastic samples, but the best
results were achieved with DT as the classification
technique.

The results indicate that the application of DT with HSI
could be used for sorting plastic samples with respect

to their type of plastic (polymer), version of plastics
(colour) and the FRs used for doping the plastic, with a
high degree of accuracy and in an automated way. These

findings are highly valuable for the plastic industries and
for the waste recycling industries. These results are even



(12

Hyperspectral Imaging and Chemometrics for Classifying Plastics with Brominated Flame Retardants

20

100

20

100

20

100

=V

| E.I' .Il gu
- ’

g
‘

F‘I.r

3
®l

20

iy
(=]

BV

|
| EI .Il 5I
> ’

n
iy
.*

‘{ B

ra
=]
.9
o
fay]
=]
&

B
®

| E.I' .Il gu
- ’

g
‘

F‘I.r

]
=]
I
=]
o]
=]
g L

20

40

60

a0

100

20

40

60

80

100

20

40

60

a0

100

[an]
(=]

!
B
ol

B2
]

5
&
&

20

5
3
&

. Ps
. ABS

Figure 5. NIRS-HSI of the

real samples of plastics and
their classification as a func-
tion of: A) Type of polymer,
PS (red samples) and ABS
(blue samples). B) Versions of
plastic, Black (red samples)
and Natural (blue samples).

C) Type of flame-retardant,
HBCD (red samples), TBBPA
(yellow samples), Deca-BDE
(green samples) and REF (blue
samples); by using a DT clas-
sification model for the whole
sample.
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more remarkable, considering that the applications of the
models on real samples, led to correct classification of
100%, notwithstanding the differences in texture, shape
and orientation of these last samples.

Therefore, a new method, fast, robust and reliable to
identify and distinguish the polymers and the contained
substances could be of high value to the plastic and
waste recycling industries, saving both time and money.
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