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The presence of a few kernels with sprouting problems in a batch of wheat can result in enzymatic activity sufficient to compromise flour func-

tionality and bread quality. This is commonly assessed using the Hagberg Falling Number (HFN) method, which is a batch analysis. Hyperspectral 

imaging (HSI) can provide analysis at the single grain level with potential for improved performance. The present paper deals with the development 

and application of calibrations obtained using an HSI system working in the near infrared (NIR) region (~900–2500 nm) and reference measure-

ments of HFN. A partial least squares  regression calibration has been built using 425 wheat samples with a HFN range of 62–318 s, including field 

and laboratory pre-germinated samples placed under wet conditions. Two different approaches were tested to apply calibrations: i) application 

of the calibration to each pixel, followed by calculation of the average of the resulting values for each object (kernel); ii) calculation of the aver-

age spectrum for each object, followed by application of the calibration to the mean spectrum. The calibration performance achieved for HFN 

(R2 = 0.6; RMSEC ~ 50 s; RMSEP ~ 63 s) compares favourably with other studies using NIR spectroscopy. Linear spectral pre-treatments lead to similar 

results when applying the two methods, while non-linear treatments such as standard normal variate showed obvious differences between these 

approaches. A classification model based on linear discriminant analysis (LDA) was also applied to segregate wheat kernels into low (<250 s) and 

high (>250 s) HFN groups. LDA correctly classified 86.4% of the samples, with a classification accuracy of 97.9% when using an HFN threshold of 

150 s. These results are promising in terms of wheat quality assessment using a rapid and non-destructive technique which is able to analyse wheat 

properties on a single-kernel basis, and to classify samples as acceptable or unacceptable for flour production.
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Introduction
Hyperspectral imaging
Hyperspectral imaging (HSI) applies spectroscopy 
coupled with imaging, to give a so-called “hypercube”. 
When used in the near infrared (NIR) wavelength region, 
this is particularly useful to explore both the chemical 
composition of a material and the spatial distribution of 
composition within a sample. However, in comparison 

to traditional NIR spectroscopy, HSI places additional 
requirements on data management and processing, which 
is of paramount importance to extract useful chemical 
information for samples.1

The large amount of recorded data should be processed 
in order to avoid redundant information but without 
affecting the useful data. Factors affecting HSI images 
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include the presence of bad pixels, noise and spatial 
and spectral non-uniformity of illumination and detector 
response for which normalisation procedures are essen-
tial.2 Processing of hypercubes is based on several steps, 
which have been detailed in previous review papers.3 For 
example, a relevant aspect is the pre-processing methods 
applied to the spectral data to remove noise or to correct 
for other optical effects before the application of chemo-
metric modelling.4

HSI can be used for unsupervised or supervised clas-
sification, or for prediction of quantitative properties. 
Whereas several papers report on the subject of pixel 
classification based on PCA, sometimes it is difficult to 
attribute different clusters to a particular compound or 
cause. On the contrary, supervised methods are based on 
reference chemical (or physical) measurements and then a 
statistical model is built as a calibration for the prediction 
or classification of unknown samples. Applications of HSI 
in food science have spread widely during the past few 
years due to its capability for high speed, non-destruc-
tive inspection for on-line quality control. The extraction 
of useful information from hyperspectral images, the 
application of effective chemometric techniques and 
the correct data management are crucial steps to build 
and then apply calibrations for the prediction of food 
chemical constituents.

Wheat quality criteria
Wheat quality criteria include protein content and 
Hagberg Falling Number (HFN). The latter parameter 
is an indirect measurement of the a-amylase activity, 
which is very relevant for flour functionality in terms 
of the dough rheology and quality of baked products, 
especially bread.5 This enzyme hydrolyses alpha bonds 
of starch, yielding glucose and maltose. In germinating 
grain, a-amylase is synthesised by the scutellum and 
later by the adjacent aleurone,6 and its activity is affected 
by germination time and environmental temperature.7 
Especially in wet conditions before the harvesting period 
or in problematic years, the a-amylase may be activated 
prematurely and has deleterious effects on the functional 
properties of the resulting flour. Pre-harvest sprouting 
has been reported as one of the most important factors 
for wheat quality, because it can lead to significant 
economic losses in a short time just before the wheat 
harvest.8 The intensity of the damage depends on the 
climatic conditions and on the susceptibility of particular 
cultivars to sprout damage. Direct or indirect methods for 

a-amylase measurement are commonly applied, usually 
limited to bulk measurements only. HFN is the officially 
accepted method to assess the quality of wheat and flour 
related to the a-amylase activity (ICC standard method 
no. 107/1, 1968).9

HFN measurement
The HFN method is based on measurement of the time 
for a plunger to fall through a wholemeal paste in hot 
water after mixing.9 High a-amylase activity causes starch 
to break down under the conditions of the test, reducing 
the viscosity of the paste and reducing the time for the 
plunger to fall. The minimum HFN value is 60 s, this being 
the initial mixing time, while good bread-making wheats 
can have values higher than 400 s. HFN values above 
250 s, 300 s or in some cases 350 s are required for high-
quality grading depending on the receival standards set 
by the wheat industries in different countries.10 

It has been highlighted that the use of tools to rapidly 
analyse sprouted and unsprouted kernels would be bene-
ficial in breeding programmes.11 Previous researchers 
compared several methods commonly used to estimate 
sprout damage in wheat, and a non-linear relationship 
between HFN and percentage of sprouted kernels was 
reported, while the Perten liquefaction number, 6000/
(HFN-50) results in a linear relationship.12 Barnard, Van 
Deventer and Maartens13 highlighted that HFN does not 
reflect entirely the activity of a-amylase, as it is influ-
enced by other factors such as starch and fibre. The coef-
ficient of determination between HFN and a-amylase 
activity was reported to be R2 = 0.848.13 Moreover, it 
should be noticed that the presence of a few kernels with 
very high a-amylase activity, i.e. low HFN, have a large 
effect on the overall sample.

HFN is relatively time-consuming and requires prepa-
ration of a ground sample, an accompanying analysis 
of moisture content and duplicate analyses. Alternative 
analytical methods have been investigated, e.g. enzy-
matic kits for a-amylase activity measurement,14 anti-
body tests15 and spectroscopic methods.16–18 Despite 
the development of antibody-based tests for the 
measurement of a-amylase activity, the traditional HFN 
method is still regarded as the preferred one because it 
combines ease of use, reliability of results and wide use 
throughout the wheat and milling industry, especially for 
quality control and screening purposes.

HFN requires analysis of a ground sample and cannot 
give information on single wheat kernels. This might be 
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useful as a small portion of sprouted grains may be suffi-
cient to drop the HFN below the acceptable quality limits, 
and the selection and screening of the best lines resistant 
to specific environmental conditions is one of the most 
important parameters for breeding programmes, due to 
the different response of genotypes.8,19 In fact, it has 
been reported that screening technologies are needed to 
identify cases of late maturity a-amylase, which causes 
low HFN in wheat in the absence of preharvest sprouting, 
and different genotypes show different degrees of sprout 
resistance.10

Non-destructive analysis using NIR 
spectroscopy
NIR spectroscopy is rapid, non-destructive and can 
be applied to whole kernels, and an effective method 
would therefore be beneficial for analysis of commercial 
samples to identify problem wheat kernels. Also, breeders 
are seeking non-destructive methods for screening of 
kernels to assess sprouting resistance, either at the single 
kernel level to enable favourable grains to be selected for 
breeding or because limited sample quantity is available. 
The application of NIR spectroscopy has been evaluated 
to estimate sprouting problems in wheat.16,20 A screening 
system has been recently described for in situ monitoring 
of wheat quality parameters, and the HFN was predicted 
with good results, i.e. standard error of cross-validation 
(SECV) of 31 s and R2 = 0.70, using a partial least squares 
(PLS) calibration model based on bulk NIR reflectance 
spectroscopy.21

HSI technology enables the study of single kernels, 
instead of just bulk measurements. Many kernels can be 
imaged in the same hypercube and calibrations applied 
individually to each kernel. Koç, Smail and Wetzel22 
applied HSI to study sprout damage in wheat, using 
six wheat varieties with artificially induced sprouting 
achieved by exposing kernels to high moisture up to 
36 h. A classification was tested according to the level 
of sprouting, and kernels were analysed by principal 
component analysis (PCA) on a single pixel level within 
the kernels. Better correlations with germination time 
were achieved for the embryo region of the kernel than 
for other regions, but no clear classification of sprouted/
unsprouted grains was possible.

HSI in the NIR region has also been applied to predict 
a-amylase activity in single wheat kernels, using enzymatic 
kits as the reference method.20,23 Xing et al.20 explored 
the possibility of predicting a-amylase activity by HSI 

in the NIR region for individual Canadian Western Red 
Spring wheat kernels, in comparison to a Fourier trans-
form (FT)-NIR instrument. The calibration performance 
was always lower for HSI, being R2 = 0.72–0.79 for the 
HSI instrument and 0.74–0.82 for FT-NIR. Logarithmic 
transformation of the reference a-amylase activity value 
slightly improved the model. However, all the models 
reported tended to overestimate the enzyme activity at 
low values and underestimate at high values. In a previous 
paper, it was reported that the performance of the PLS 
models to predict the enzymatic activity had R2 values of 
0.54 and 0.73 for Canada Western Amber Durum and 
Canada Western Red Spring, respectively.23 

A number of papers have reported on the challenges of 
developing accurate single kernel calibrations for wheat 
quality parameters, due to the difficulty of obtaining refer-
ence data for single kernels, as many analytical methods 
require larger amounts of sample. For this reason, a 
potential approach is to develop calibrations using refer-
ence measurements for bulk samples, and to apply them 
to single kernels.

A further consideration for HSI is the method used 
for data treatment, in particular whether the hypercube 
should be treated on a single pixel basis or whether the 
objects of interest in the hypercubes should be previously 
selected so that the calibration is applied on the mean 
spectrum for each object, and whether these different 
approaches lead to different prediction results. 

Therefore, the aims of the present paper were: a) to 
build a PLS calibration for the prediction and classifica-
tion of HFN in intact wheat kernels using HSI in the NIR 
region; b) to compare two approaches for the application 
of calibrations to HSI images of wheat kernels.

Materials and methods
Wheat samples
Wheat samples cultivated in the United Kingdom were 
used in the present experiment, including examples of a 
wide range of varieties (>30) and from multiple growing 
areas within the UK. The total number of samples was 
425, as described in Table 1. These were composed 
of two sets of samples. The first set comprised 309 
samples from a field test involving late harvesting to 
assess HFN problems, using two bread wheat varieties 
(Crusoe and Skyfall) grown in six locations across the 
UK. The second set comprised 116 samples from 30 
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wheat batches including the most common UK varieties 
(e.g. Chilton, Claire, Cordial, Crusoe, Einsten, Gallant, 
Invicta, JB Diego, Mulika, Panorama, Solstice), and exam-
ples of a German and a French wheat. These samples 
were treated in the laboratory to reach a pre-germination 
step which increases the a-amylase activity, but avoids 
obvious sprouting. This was achieved by soaking the 
samples in distilled water for 30 min and subsequently 
spreading them on plastic trays, covered with wet paper 
tissue to maintain high relative humidity and stored at 
20°C. Sub-samples of c. 500 g were taken at discrete 
intervals (typically 3 h, 9 h, 12 h) during the germination 
phase up to c. 30 h and finally dried at 30°C in an oven 
(Mitchell dryers, UK), which took approximately 6–8 h. 
The moisture content of the samples was periodically 
checked using a SINAR moisture analyser until it was 
below 12–13%. An aliquot of each sample was analysed 
for HFN as described below. Previous workers have 
applied freeze-drying to samples to stop the germination 
process. However, it was considered that freezing the 
wet grains may affect the internal microstructure of the 
kernels and could affect the NIR spectra, and oven drying 
at mild temperature conditions was therefore used. This 
is more consistent with the approach used to process 
commercial wheat samples with excess moisture content.

Falling Number measurement
HFN was used as the reference method, according to 
the international standardised method.9 300 g of each 
sample was milled using a Laboratory Mill LM 3100 
(Perten Instruments, Hägersten, Sweden) with a 0.8 mm 
sieve to obtain a consistent particle size. The moisture 
content of ground wheat was checked using a PerCon 
Inframatic 8611 NIR spectrometer (Perten Instruments) 
before the HFN measurement to define the amount of 
water to be added. 7 ± 0.05 g ground wheat were put into 
a viscometer tube and 25 ± 0.2 mL of distilled water was 
added, in relation to a previous moisture determination. 
A Perten FN1700 instrument was used for the analysis, 
which was done in duplicate.

HSI data acquisition
Hyperspectral images were acquired using a pushbroom 
approach, using a system described by Millar, Whitworth, 
Chau and Gilchrist.24 The instrument was supplied by 
Gilden Photonics Ltd (Glasgow, UK) and includes a SWIR 
spectral camera (Specim Ltd, Oulu, Finland) containing 
a cooled 14-bit 320 × 256 pixel HgCdTe detector and 

N25E spectrograph, providing 256 spectral bands over 
a wavelength range of ~990–2500 nm, with a spectral 
resolution of about 6 nm. Samples were presented on a 
moveable stage and illuminated with two 500 W incan-
descent line lamps mounted either side of the lens at an 
angle of incidence of approximately 45°. The lamps were 
only turned on for the few seconds required to acquire 
the image, resulting in minimal heating of the samples. 
Samples were imaged using a 31 mm focal length lens at 
a distance of 220 mm, providing a swathe of 35 mm and 
a pixel size of 0.109 mm for 320 spatial pixels. Images 
were acquired at a rate of 100 frames s–1, using a stage 
translation speed of 10.9 mm s–1, providing the same 
spatial resolution parallel and perpendicular to the scan 
direction. SpectralCube 3.0041 software (Specim) was 
used to control the camera and translation stage. The 
camera shutter was automatically closed for 1 s at the 
end of each scan and approximately 100 frames were 
recorded to establish the baseline signal of the detector 
(black reference) for all pixels. For each batch of samples, 
approximately 100 frames were also recorded for a 
white PTFE reference material with approximately 100% 
reflectance across the entire measured spectral range 
(white reference). Different exposure times were used for 
samples and for the white reference to provide optimal 
dynamic range for each, with black references recorded 
for each. Thirty wheat kernels were randomly sampled 
from each batch for the HSI data acquisition. For imaging, 
the kernels were placed on a black high density polyeth-
ylene tray in random orientations, randomly crease-up or 
crease-down and separated so they did not touch.

HSI data analysis and kernel segmentation
Hyperspectral images were analysed using ENVI-IDL 5.2 
software (Harris Geospatial Solutions, Virginia, USA). The 
first step to extract useful chemical information from the 
hypercube was to calculate the log(1/R) values starting 
from the raw data. Reflectance values, R(x,y,l) were 
calculated for each pixel (spatial coordinates x,y, wave-
length l) by subtracting the black reference value for the 
corresponding detector pixel (x,l) and normalising by the 
corresponding white reference value and by the ratio of 
exposure times, assuming a linear response. Absorbance 
values, A = log10(1/R), were then calculated for each pixel.

The next step of HSI analysis was removal of spikes. 
These can be caused by bad pixels in the detector, and 
can include both high and low signal values. Several algo-
rithms and methods have been described in the litera-
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ture to identify and remove spikes from hypercubes.2,25 
Appropriate threshold selection is crucial to effec-
tively identify spikes, sometimes using basic statistics 
as spikes have usually larger deviation from the normal 
mean spectrum. The spike removal can be then applied 
by substituting the specific point by the median of the 
neighbouring spectra.2 In this study, an enhancement of 
this approach was used, in which each image pixel was 
compared with the median of neighbouring pixels, and a 
weighted average was calculated, with greater weighting 
towards the median value if the difference is large.

Following spike removal, images were segmented to 
identify the grains. Figure 1 shows an example. Figure 1a 
shows reflectance data for the 1186 nm band after spike 
removal. Figure 1b shows log(1/R) data for the same band. 
To segment grains, a binary threshold was first applied to 
this band to select pixels with log(1/R1186) < 1 equivalent 
to reflectance, R1186 > 0.1, as shown in Figure 1c. A binary 
opening operation was then applied with a circular kernel 
with a radius of 10 pixels (1.09 mm) to remove noise and 

small projections, including sprouts. The resulting image, 
shown in Figure 1d, was used to segment kernels for 
spectral analysis. A flat uniform background, both spatially 
and spectrally, is generally recommended to aid segmen-
tation of samples from the background.26 Figure 2 shows 
example single pixel absorbance spectra for a grain and 
for the tray. The chosen tray material has high log(1/R) 
values over the entire NIR spectral range, providing good 
contrast, and a binary threshold is therefore sufficient to 
achieve good segmentation.24 1186 nm was chosen for 
segmentation, as this wavelength resulted in low log(1/R) 
values for the grain regions, with good contrast and low 
noise. The effect of the spike removal procedure is also 
shown. The method is effective in removing spikes due to 
bad pixels, while preserving spectral bands. A spectrum 
is also shown for the white reference material. According 
to the normalisation procedure, this is defined to have a 
log(1/R) of 0 at all wavelengths.

Mean spectra were calculated for each segmented 
kernel and exported for separate development of 

Figure 1. Wheat kernels including sprouted examples. a) reflectance image at 1186 nm; b) log(1/R); c) binary thresholding; 
d) morphological processing for kernel segmentation.
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calibration models in comparison with reference HFN 
measurements. For the camera system used, the initial 
16 spectral bands did not contain useful data and only 
bands from ~1100 nm to 2500 nm were used for spectral 
analysis, due to excessive noise in the detector in these 
first bands.

Statistical treatment of the data
The exported mean spectra were statistically treated 
using The Unscrambler X 10.3 software package (CAMO, 
Sweden). Calibrations were developed using partial least 
squares (PLS) regression on 240 spectral bands against 
the reference HFN, to test whether is it possible to quan-
titatively predict the HFN value at a single wheat kernel 
level. The mean spectra for each wheat kernel were 
exported and used as the variables to build the statistical 
model, while the reference HFN value was used as the 
response. The algorithm used was the non-linear itera-
tive partial least squares (NIPALS). The PLS regression 
models were validated using an independent validation 
dataset and the number of principal components (PC) 
to use was chosen in order to minimise the root mean 

square error of prediction (RMSEP), leaving the software 
to choose the best PC. An initial approach was tested 
using the full set of single kernel spectra and attributing 
to them the HFN reference value for the corresponding 
bulk sample, but this approach was then avoided as the 
calibration performance was inadequate. Instead, the 
spectral data were averaged for each batch and the mean 
spectrum was used for the statistical model. Several 
spectral pre-treatments were tested, including standard 
normal variate (SNV), second derivative using Savitzky–
Golay smoothing (five points smoothing, second order 
derivative), baseline correction, de-trending and multipli-
cative scatter correction (MSC).27 On the whole dataset 
obtained, multivariate statistical analysis was applied to 
relate the spectra to the measured HFN of the wheat 
batches.

Linear discriminant analysis (LDA) is a classification 
method and was used to discriminate samples into two 
classes, i.e. high and low HFN value. LDA was calculated 
using PCA with 20 principal components, and the quad-
ratic method was used. Both a PLS analysis and LDA 
were tested in order to verify i) the feasibility of HSI for 

Figure 2. Example log(1/R) spectra for pixels corresponding to a wheat kernel before and after spike removal, and the black 
tray used as a background, showing good contrast at all wavelengths. An additive constant was added to the corrected 
spectrum for illustration purposes.
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the prediction of HFN, ii) the possibility of classifying 
wheat kernels into low-HFN and high-HFN classes based 
on the reference method. The quality of the models was 
assessed by evaluating the regression coefficient, R2, the 
errors of prediction and by using a separate validation 
dataset of about 30% of the full set of samples.

Results and discussion
Distribution of HFN in wheat samples
Table 1 shows the statistical description for the reference 
HFN measurement of wheat samples used in the present 
experiment. The total sample number (complete dataset) 
was 425, comprised of field wheat with no further treat-
ment, and a laboratory germination dataset; the complete 
dataset was randomly split into a calibration dataset and 
a validation dataset for the PLS regression analysis. 

The results of the two groups used indicate that the 
range of HFN values was similar between the field wheat 
experiment and the laboratory germination dataset, 
62 s being the minimum value and 418 s and 404 s the 
maximum values for the first and second class, respec-
tively. The average HFN for the dataset was slightly 
above 250 s, which is considered as the minimum limit 
for high quality bread-making wheats by the industry.

Figure 3 shows the distribution of reference HFN 
values for the test samples. A bimodal distribution was 
obtained, with 53 samples having values below 150 s and 
372 samples above. The samples in the lower range are 
those with high a-amylase activity indicating sprouting 

problems, and they are desired in the dataset because 
the aim is to identify problematic samples, especially 
those with average HFN below 150 s.

PLS calibration for HFN prediction
Table 2 reports the performance of the PLS calibration 
for HFN prediction in the NIR region (~1100–2500 nm) 
for several spectral pre-treatments. The spectral pre-
treatments provided improved calibration performance. 
The best performance was achieved for the second 
derivative treatment, with R2 of 0.60 and RMSEC of 
50 s. The R2 values for the external validation dataset 
were between 0.41 and 0.47, with little improvement 
depending on the spectral pre-processing applied. The 
error was slightly above 60 s, which compares favour-
ably with a repeatability of the reference HFN method 
of 8.5% for ground wheat (from 5 s to 35 s with our HFN 
range). The calibration with SNV pre-processing gave 
slightly poorer calibration performance, but has also been 
used in the present paper for comparison purposes to 
evaluate different methods for application of calibrations 
to HSI images.

The calibration performance compares favourably with 
the value of 73 s reported by Osborne16 for an NIR spec-
troscopy method, with a tested range of 62 s to 377 s, 
and a R2 value of 0.56. The author applied NIR spectros-
copy on ground wheat and therefore only a bulk meas-
urement was done.

Xing, Van Hung, Symons, Shahin and Hatcher23 
reported the prediction of a-amylase activity in 
Canadian wheats, a hard red spring and a durum variety, 

  Calibration set Validation set
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M
ax

n

Field wheat 
experiment

265.75 293 84.1 62 418 213 269.72 295 89.4 64 404 96

Laboratory 
germination

257.74 258 86.1 62 404 87 281.31 279 84.6 62 405 29

Complete 
dataset

263.43 283 84.6 62 418 300 272.41 295 88.1 62 405 125

Data were obtained from duplicate analysis by the HFN method. SD: standard deviation. Mean, median, SD, min and max are expressed in 
seconds. n = number of wheat batches analysed by HFN.

Table 1. Range of reference HFN in the wheat samples used to develop PLS models.



8	 Application of Calibrations to Hyperspectral Images of Food Grains

with R2 of 0.73 and 0.54, respectively, although crea-
tion of a single calibration model for both classes was 
not successful. This could be sufficient for classification 
purposes, as the authors reported discriminant analysis 
accuracy up to 94% for high a-amylase content and 88% 
for low level samples. More recently, the same authors 
grouped Canadian West Red Spring wheat samples into 
three categories, namely low, medium and high activity, 
according to the measured a-amylase activity. They 
reported higher correlation coefficients for an FT-NIR 
spectrometer (R2 = 0.82), while it was 0.79 for the best 
model using an HSI system. While the log transfor-
mation of the reference a-amylase activity helped in 
improving the model performance, the group with high 
enzymatic activity had visible sprouting, which could 
have affected NIR response.

Methods to apply the calibration to 
hyperspectral images
Several methods were tested to apply calibrations to 
hyperspectral images of test samples for prediction 
of HFN. By applying the calibration to each pixel, HSI 
provides the capability to map the distribution of a 
chemical compound within a sample, for example within 
kernels. For assessment of average properties for whole 
kernels or for bulk samples, potential approaches include 
application of a calibration to an average spectrum for 
the region of interest (equivalent to bulk spectroscopic 
methods), or alternatively to calculate the distribution 
of the property of interest at the single pixel level and 
then to calculate the average value for the sample.  The 
effects of these approaches have been compared for the 
HFN example.

Pre-treatments
Calibration (n = 300) Validation (n = 125) PC factor

Slope R2 RMSEC Offset Slope R2 RMSEP Offset
Raw 0.397 

0.599
0.40 62.6 161.7 0.383 0.42 67.0 170.4 8

2nd derivative 0.60 50.4 110.8 0.508 0.43 62.7 130.2 11
SNV 0.513 0.51 56.7 128.9 0.490 0.47 63.9 139.6 11
Baseline+detrend 0.424 0.42 61.6 153.3 0.409 0.41 67.5 161.5 9
MSC 0.415 0.41 61.9 156.7 0.408 0.42 66.8 159.9 7

R2: coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square error of prediction; PC: principal 
component; SNV: standard normal variate; MSC: multiplicative scatter correction

Table 2. Performance of the PLS calibration models for HFN prediction by HSI, by testing several spectral pretreatment 
methods.

Figure 3. Distribution plot of HFN measured in the whole dataset of wheat samples (n = 425).
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In either case, it is advisable to apply any required 
spike removal procedures prior to further processing to 
avoid their effect on the spectra.28 The spike removal 
processing was done in both cases at the beginning on 
the hypercube, since any bright bad pixels in the spectral 
band used for segmentation appear as vertical lines in 
the segmentation image, making segmentation more 
complex.

Method 1. Application of the calibrations at single 
pixel level, followed by averaging the output within 
each object
Software was written in IDL to apply the relevant spectral 
pretreatment to each pixel in the hypercube and then to 
apply the PLS calibration coefficients for each spectral 
band to assess the spatial distribution of predicted HFN 
values for each pixel within the kernels. The mean of 
these values was then calculated to predict the HFN for 
each kernel.

Method 2. Averaging the spectra within each object 
followed by application of the calibration on the 
mean spectra
The alternative approach was to calculate mean spectra 
for each object (wheat kernel), followed by the applica-
tion of the calibration, including any spectral pretreat-
ment, to this average spectrum to give the predicted 
HFN for the kernel. In this case, a lower computational 
capacity is typically needed, since calculations at the 
single pixel level involve only calculation of mean spectra 
rather than application of calibrations, and the latter is a 
more computationally demanding operation, particularly 
if spectral pre-treatments are included.

In cases where no spectral pretreatment is applied, the 
two methods are equivalent, as shown by the following 
equations. For absorbance values Aij for spectral bands 
i = 1 to n and spatial pixels j = 1 to m within a chosen 
object, the value of a property Y, such as HFN, can be 
predicted for each pixel using an equation of the form:

	
=

= +å0
1

n

j i ij
i

Y a a A 	 (1)

where ai are the calibration constants derived from the 
PLS regression.

The mean value of Y for the object (method 1) is given 
by:

	
= = =

= = +å åå0
1 1 1

1 1m m n
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Alternatively, the mean spectrum for the object may be 
calculated as:

	
=

= å
1
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j
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m
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Applying the calibration to this mean spectrum yields 
a predicted measurement (method 2) for the object of:

	
= = =

= + = +å å å0 0
1 1 1

1n n m
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i i j

Y a a A a a A
m

	 (4)

which is equivalent to the result in (2).
For spectral pretreatments, this is not necessarily the 

case, depending on the pretreatment. For convolution 
filters, the approaches are also equivalent as shown by 
Equations 5–8. If a convolution pretreatment is applied 
to spectra to yield treated spectra:

	 +
=

=å ,'
q

ij k i k j
k p

A w A 	 (5)

or a treated mean spectrum
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where wk are the convolution weights, and for values 
1 ≤ i + k ≤ n, then the predicted value for the object, 
using alternative calibration constants bi derived for the 
pretreated spectra, is

	 +
= = =
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j i k p

Y b b w A
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by the first method, and

	
+

= = =
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i k p j
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by the second method, which are equivalent.
An example is the Savitzky–Golay second derivative 

pretreatment which gave the best calibration perfor-
mance for the HFN calibration reported here. Figure 4 
shows the effect of the two approaches, using this cali-
bration. Grains for a poor quality sample, i.e. low refer-
ence HFN value, are compared to a sample with a high 
HFN value, and it can be seen that the two approaches 
are equivalent in predicting the HFN for single kernels. 
Moreover, the predicted mean HFN values for the 
batches tested were very close to the reference HFN 
values, i.e. 117 s vs 103 s for predicted and reference, 
respectively, in a low-quality wheat batch, and 404 s vs 
370 s in the case of good quality wheat. The first method 
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is useful to visualise differences within a single grain, 
which is not possible with the second method. In our 
sample, a distinctive distribution of HFN values is seen 
within each grain, with lower values at the ends. This 
is independent of grain orientation, suggesting that it 
represents a genuine non-uniformity within the grains 
and not an artefact of the imaging and illumination condi-
tions. Potentially, the distribution relates to the differen-
tial production of a-amylase activity in different regions 
of the grain. It should be noted that lower values are 
typically seen at both ends of the grain, and are there-
fore not only associated with the germ and scutellum. 
These results are in line with previous papers dealing 
with HSI estimation of germination in wheat, where it 
was suggested to use the size at the ends of the kernels 
as a parameter to recognise sprouted kernels, due to the 
swelling of the embryo during germination.17 It was also 
previously reported that other regions within the wheat 
kernels are more useful for other predictions, e.g. HSI 
prediction of flour yield, while the germ tip of the kernel 
was the worst region for softness prediction.29

Previous studies applying HSI to HFN observed a 
non-uniform distribution within the kernel: Smail et al.11 
reported that the developed embryos in wheat can be 
recognised by HSI, as they were observed in the hyper-
cubes of germinated kernels. The authors observed that 
much of the change in activity during early sprouting 
occurs in the outer kernel layers, i.e. aleurone and germ. 
In our case, the grains were placed in random positions 
in terms of crease up and crease down, and in the same 
hypercube, kernels in both positions were present at the 
same time.

Although the two methods for calculating mean HFN 
values for kernels are equivalent for spectral pretreat-
ments based on convolution, the results may differ for 
other pretreatment methods. To test the magnitude 
of this effect, the SNV pretreatment reported in Table 
2 was applied and the PLS model using this pretreat-
ment was used to predict unknown samples. As shown 
in Figure 5, obvious differences in the predicted HFN 
values were obtained depending on the method used. 
When the second method was applied, generally the 
HFN prediction was quite similar between the two 
equations, i.e. the kernels with very low HFN values 
were identified. It should be noted that this method 
corresponds most closely to that used to calculate 
reference spectra for development of the calibra-
tion. However, differences were observed for the 

first method. The kernels with the lowest HFN in the 
batch were still predicted successfully, but the abso-
lute value was much higher. The first method led to a 
systematic overestimation of the HFN in comparison 
with the second method. In this example, the best 
prediction of the batch HFN was obtained by using the 
second method. Also, when the first calibration was 
applied (Figure 4), the lowest predicted HFN within a 
single kernel was always localised at the distal portion 
of the grains, while when the second equation was 
applied, only the germ portion had obviously lower 
HFN predicted values (Figure 5).

The application of calibrations for bulk NIR instru-
mentation follows a different approach. Typically, a 
single spectrum is measured for a sample presented 
to a window, corresponding to a mean spectrum for 
that region of the sample, and is therefore closest to 
the second method in which calibrations are applied to 
mean spectra.

Therefore, the sequence of spectral processing should 
be taken into consideration when applying a PLS calibra-
tion on hypercubes, as it can have influence on the final 
predicted values. This influence depends on the spectral 
pre-treatments applied when building the calibration: in 
fact, linear methods such as convolutions do not lead 
to differences in the prediction, while obvious differ-
ences were observed when the SNV pre-treatment was 
applied. The SNV method involves treating each spec-
trum by subtracting the mean log(1/R) over all bands 
and normalising by their standard deviation, resulting 
in a pretreated spectrum with mean of 0 and standard 
deviation of 1:

	
s
-

=' i
i

A AA 	 (9)

where A'i is the corrected value, A— is the mean of the 
band absorbances and s is their standard deviation. The 
effect of subtracting the mean is equivalent for both 
methods, but normalisation of each spectrum by its 
own standard deviation is not equivalent to normalisa-
tion by the overall standard deviation for all kernel pixels 
and bands. Being sensitive to noise, modifications of 
SNV have been proposed, e.g. using the median instead 
of the mean, or using the inner interquartile for mean 
and standard deviation calculations.4 This effect might 
be also tested on other pre-processing techniques, 
e.g. multiplicative scatter correction (MSC) which is 
similar to SNV up to a simple rotation and offset correc-
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Figure 4. Application of a PLS calibration using second derivative pre-processing for HFN prediction on wheat kernels 
by HSI, by using two methods: a) pixel-by-pixel application of the calibration and b) average calculation of the predicted 
HFN; c) application of the calibration on the mean NIR spectrum for each kernel. HFN: predicted value for the batch; SEM: 
standard error of the mean; Batch HFN: reference measurement value. Numbers on wheat kernels indicate the predicted 
HFN (s).

Figure 5. Application of a PLS calibration for HFN prediction on wheat kernels by HSI, using the two methods previously 
described, and a calibration where the SNV pre-processing was applied to two wheat batches with different HFN values. 
a) Pixel-by-pixel application of the calibration coefficients; b) second part of the method, average predicted HFN for each 
kernel (method 1); c) average spectrum calculation followed by application of the calibration coefficients (method 2).
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tion. Further work is needed to understand the better 
approach for application of PLS calibrations to hyper-
cubes for prediction of the chemical composition of 
granular food commodities, and the effects for different 
pretreatments.

LDA model for wheat classification related to 
sprouting problems
Linear discriminant analysis (LDA) was applied as a super-
vised method to discriminate between samples with high 
or acceptable HFN and those with excessively low HFN. 
As the PLS regression model did not result in particu-
larly high performance for prediction of HFN values, this 
approach can be an alternative way to classify wheat 
samples for suitability for flour production.

The threshold to classify the dataset into two groups 
was set at an HFN value of 250 s, corresponding to the 
typical commercial specification for quality wheat, while 
also a lower threshold limit was set for grouping into “high” 
and “low” HFN, i.e. 150 s, which may be more relevant for 
identification of individual kernels that could contribute 
to an unacceptably low average value for a bulk sample. 
As shown in Figure 6, the LDA classification accuracy for 
the best models was 86.4% when the limit was 250 s, 
while it was 97.9% for the samples with very low HFN 
values. The plot shows linear discriminant values for each 
of the samples, with the axes representing the two cate-
gorical variables, i.e. high and low HFN. The classification 
is done by assigning the higher value to one of the two 
categories, and when a point is presented by two colours 
it indicates a misclassified sample.

Assuming that a low average value may be caused by 
a few much damaged kernels, identification of these at 
a lower threshold may be useful for practical applica-
tions. Interestingly, the better classification performances 
were obtained in both cases using untreated spectra, and 
spectral pre-treatments did not result in better scores 
(data not shown). The performance of this classification 
might be accurate enough for practical applications in the 
food industry, and LDA classification might be an alterna-
tive to the PLS prediction, when the main aim is not to 
predict the exact HFN or a-amylase activity but just to 
segregate according to the quality criteria set in terms of 
HFN threshold.

Several methods have been reported in the literature 
with the aim to classify cereal grains from NIR spectros-
copy data. An alternative partial least square-discriminant 
analysis (PLS-DA) model was reported by McGoverin, 

Engelbrecht, Geladi and Manley18 to distinguish between 
viable and non-viable proportions of the image and 61% 
of the variability in the viable/non-viable classifier was 
explained using six factors, by applying the classification 
method on each pixel of the kernels. The authors also 
calculated a PLS regression as an alternative to PLS-DA, 
to predict the proportion of viable kernels or incubation 
time, in which case the obtained model was not suffi-
ciently reliable, consistent with our own results.

Xing et al.17,23 applied alternative methods to predict 
a-amylase activity in wheat kernels, grouping samples 
into low, medium and high a-amylase activity. The ratio 
between log(1/R) at 878 nm and 728 nm was used to 
discriminate between sound and sprouted kernels, but 
the risk of misclassification is high. The authors applied a 
PCA on the hypercube to obtain a classification accuracy 
of 87.9% for severely sprouted kernels, whereas 64.5% 
of sprouted kernels were misclassified as sound.17

In the present experiment, LDA was applied in order to 
classify the problematic kernels, i.e. those with low HFN 
values, from those with higher values. Whereas there 
might be a kernel-to-kernel variation, there is a strong 
effect of sprouted kernels on the average HFN value, and 
therefore the application of this classification method 
might help the food industry and breeders with non-
destructive classification of whole wheat kernels.

Conclusions
The present paper reports on the management of hyper-
spectral data and evaluates several methods for the appli-
cation of PLS calibrations, with reference to prediction of 
HFN in single whole wheat kernels. Previous studies 
have evaluated HSI for classification of sprouted grains 
and for prediction of enzyme activity measured for single 
kernel extracts, but this is the first HSI calibration against 
the industry-standard HFN method. A calibration perfor-
mance of R2 = 0.60 (error ~50 s) and validation R2 = 0.43 
(error ~63 s) was achieved for samples of UK wheat with 
HFN values in the range 62–318 s, and compares favour-
ably with previous studies using destructive bulk NIR 
analysis. Even better performance was obtained using 
classification models based on LDA instead of a PLS 
calibration. This suggests that an HSI method could be 
used to provide an effective, rapid, non-destructive 
assessment of the suitability of wheat sample HFN for 
flour production using a novel single kernel classification 
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approach. A further application would be for classifica-
tion of individual kernels for selection of breeding lines 
for sprout resistance. A similar approach may also be 
applicable to development of classification methods for 
other granular commodities based on very low or very 
high concentrations of a particular compound.

Two approaches for application of calibrations were 
tested. It was shown that application of calibrations 

on a single pixel basis followed by calculation of 
mean values is equivalent to application of calibra-
tions to mean kernel spectra when linear spectral pre-
treatments are used for calibration development, while 
non-linear treatments such as SNV lead to obvious 
differences between these approaches. Further work 
would be required to assess the effects for other non-
linear treatments.

Figure 6. Linear discriminant analysis (LDA) plot for HFN classification of whole wheat kernels by HSI, setting a threshold 
of 250 s (a) and 150 s (b) to group into low- and high-HFN. Central colour of each point indicates reference classification, 
position and border colour indicates predicted NIR classification. LDA classification ability: 86.4% (a) and 97.9% (b). Wave-
length region: ~1100–2500 nm.
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