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Abstract

Parts II and III of this series are initiated by a joint discussion of features related to the lot. Part II then delineates the central elements of

the Theory of Sampling for zero-dimensional objects. It is necessary to be brief within the limited format of the present tutorial series, but all

essential model rigour has been maintained. An attempt has been made to focus on the central mathematical theoretical core of TOS while

also showing how this relates directly to sampling practise (materials, equipment and procedures). A highlight of the latter issue concerns

experimental estimation of the Fundamental Sampling Error (FSE). Part II is also fundamental for further developments in Part III, as it

presents a complete overview discussion of the basic sampling operation of the one-dimensional object as well.
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1. Joint introduction of parts II and III: three-, two-,

one-, zero-dimensional models

o Strictly speaking, all material objects, lots L, occupy a

three-dimensional Cartesian space. From a practical as

well as a theoretical standpoint, however, it may be

useful to represent a physical object by a model of a

smaller number of dimensions.

o A three-dimensional model alone can represent bulky

lots L, e.g., an ore body and similar.

o Flat objects, such as a sheet of paper, a steel sheet, the

thickness of which is:

n small in comparison with the two dimensions of

its surface,

n practically uniform (with a tolerance of, say,

20%) can often be well represented by a two-

dimensional model. From a physical and math-

ematical standpoint, every element of the object

is represented by its projection on a plane (often

horizontal). We often have occasion to work on

lots L, which can be considered as practically

two-dimensional.

o Elongated objects such as a rail, a cable or a flux of

matter whose length is:

n very large in comparison with the two dimensions

of its cross-section,

n practically uniform (with a tolerance of, say, 20%)

can be well represented by a one-dimensional

model. From a physical and mathematical stand-

point, the lot is here represented by its projection

on the axis of elongation.

o Discrete objects such as lots made up of a large

number of unspecified units, assumed to be inde-

pendent from one another; i.e., populations of non-

ordered units can, by extension and by convention, be

defined as zero-dimensional objects. There are two

cases:

n Unit masses are more or less uniform (with a

tolerance of, say, 20%): Here, conventional

statistics can be applied.

n No hypothesis of uniformity of the unit mass is

made. Conventional statistics cannot be applied.

We shall here deal exclusively with this most

realistic case.
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