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When dealing with practical applications of hyperspectral imaging, the development of efficient, fast and flexible classification algorithms is of the 

utmost importance. Indeed, the optimal classification method should be able, in a reasonable time, to maximise the separation between the classes 

of interest and, at the same time, to correctly reject possible outlier samples. To this aim, a new extension of Partial Least Squares Discriminant 

Analysis (PLS-DA), namely Soft PLS-DA, has been implemented. The basic engine of Soft PLS-DA is the same as PLS-DA, but class assignment is 

subjected to some additional criteria which allow samples not belonging to the target classes to be identified and rejected. The proposed approach 

was tested on a real case study of plastic waste sorting based on near infrared hyperspectral imaging. Household plastic waste objects made of 

the six recyclable plastic polymers commonly used for packaging were collected and imaged using a hyperspectral camera mounted on an indus-

trial sorting system. In addition, paper and not recyclable plastics were also considered as potential foreign materials that are commonly found in 

plastic waste. For classification purposes, the Soft PLS-DA algorithm was integrated into a hierarchical classification tree for the discrimination of 

the different plastic polymers. Furthermore, Soft PLS-DA was also coupled with sparse-based variable selection to identify the relevant variables 

involved in the classification and to speed up the sorting process. The tree-structured classification model was successfully validated both on a test 

set of representative spectra of each material for a quantitative evaluation, and at the pixel level on a set of hyperspectral images for a qualitative 

assessment.
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Introduction
Over the past decades, Hyperspectral Imaging (HSI) has 
gained increasing attention from industries interested 
in the implementation of automated sorting systems to 
solve a number of different problems. Indeed, HSI has 
found a wide range of applications in the food industry, 
including the quality evaluation and safety assessment 

of several food products,1 such as fruits and vegeta-
bles,2,3 meat,4 cereals5 and dairy products.6 Moreover, 
other manufacturing environments, such as the pharma-
ceutical industry, have employed real-time HSI systems 
for quality control and process monitoring in the frame 
of the process analytical technology.7–9 Another relevant 
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field of application of HSI is represented by the recy-
cling industry, where hyperspectral sensors are used to 
separate end-of-life objects, such as plastic,10 paper11 or 
electronic waste,12 according to material type.
In these contexts, HSI can be considered as a step 

forward with respect to traditional spectroscopic tech-
niques, which allow fast and non-destructive charac-
terisation of the chemical properties of the analysed 
samples. In fact, HSI systems couple these advantages 
with the possibility of also visualising the spatial distri-
bution of the chemical features of interest within the 
sample surface. Furthermore, in sorting systems, HSI can 
also be employed to quickly identify the chemical compo-
sition of homogeneous objects moving on a conveyor 
belt, and to distinguish them from samples with different 
composition.13

In practical situations, hyperspectral imaging can be 
applied to address complex classification issues, where 
the sorting problem under investigation requires the 
discrimination of several classes at the same time, with 
some classes sharing similar features. This can be easily 
managed by using HSI systems, since with a single 
measurement, i.e. with the acquisition of a single hyper-
spectral image, it is possible to have a wide range of 
information. However, in order to meet the needs of real-
time applications, it is necessary to identify classification 
strategies able to handle a huge amount of spectral data, 
providing reliable results in short computational times.14

When dealing with multiple classes, this issue can be 
addressed using a tree-structured classification model, 
where each branching (tree node) corresponds to a local 
classification model.
In this manner, classification is performed considering 

a top-down approach, where the samples are initially 
assigned to general macro-categories, and then each 
macro-class is split into increasingly specific categories, 
until reaching the classes of interest.15–17

Another relevant issue to be faced in practical applica-
tions of HSI in sorting systems is related to the fact that, 
generally, it is not easy to have a strict control of the 
input stream in order to avoid the presence of foreign 
objects, i.e. objects not belonging to the target classes of 
the specific application. In this context, the availability of 
algorithms able to maximise the discrimination between 
the categories of interest and, at the same time, to iden-
tify possible foreign materials is of the utmost importance.
Partial Least Squares Discriminant Analysis (PLS-DA) 

is one of the most widely used methods for multivariate 

classification of hyperspectral data.18 Basically, PLS-DA 
is an extension of the PLS algorithm, which aims at iden-
tifying a new set of variables, named Latent Variables 
(LVs), by maximising the between-classes variance. Class 
membership is coded using a dummy Y matrix, and 
the assignment of unknown samples is based on the 
a posteriori probability associated with the corresponding 
Y predicted values. The standard PLS-DA approach 
assigns a sample to the class for which it has the higher 
a posteriori probability, resulting in unknown samples 
always being assigned to one of the target classes.19,20 
Therefore, on the one hand PLS-DA has the great advan-
tage of maximising the separation between the consid-
ered classes but, on the other hand, it does not allow a 
straightforward identification of outliers.
Conversely, the possibility of having unassigned 

samples is one of the major advantages of the so-called 
class-modelling techniques, which are essentially based 
on describing each single class independently from the 
others, and then verifying whether an unknown sample 
is compliant or not with the characteristics of each class 
of interest.21 In this manner, it is possible that a new 
unknown sample is rejected from all the class models, 
resulting in an unassigned sample. Soft Independent 
Modelling of Class Analogy (SIMCA) is the most common 
class-modelling method. It calculates local Principal 
Component Analysis (PCA) models for each considered 
class, which are used to define class boundaries based 
on the distances both in the score space (Hotelling’s T2) 
and in the residual space (Q residuals).22 Notwithstanding 
the advantages of class-modelling methods like SIMCA, 
they can provide poor classification results when the 
modelled classes are quite overlapped, since the model 
is not oriented towards the discrimination of the consid-
ered categories.
Given these considerations, it is reasonable to assume 

that a classification algorithm to be efficiently employed 
in sorting systems should comprise the advantages of 
both classification techniques and of class-modelling 
methods, i.e. it should be able to maximise the discrimi-
nation between the categories of interest and to recog-
nise and reject outlier samples at the same time.
To this aim, in the present paper a modified version of 
the PLS-DA algorithm, namely Soft PLS-DA, is proposed. 
The basic principle of Soft PLS-DA is the same as PLS-DA, 
but class assignment is performed by fixing additional 
limits both on the Y predicted values and on the Q 
residuals. In this manner, the classification model is built 
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by maximising the differences between the modelled 
classes; at the same time, the additional limits allow the 
rejection of samples belonging to unexpected categories 
and relegation of them to a general category of unas-
signed samples.
The effectiveness of Soft PLS-DA algorithm was tested 
on a case study related to the implementation of a near 
infrared (NIR) hyperspectral imaging system for plastic 
waste sorting. Indeed, the different plastic polymers have 
a specific spectral fingerprint in the NIR range and optical 
sorting is commonly used to separate them.23,24 The goal 
of our study consisted in the implementation of a clas-
sification method able to effectively discriminate paper 
and six recyclable plastic polymers commonly used for 
packaging, and to correctly reject objects belonging to 
non-target classes, such as non-recyclable plastics.
The present manuscript is structured as follows:
■■The next section reports the theoretical background of 
the standard classification approach based on PLS-DA 
and a detailed description of the novel Soft PLS-DA 
algorithm.
■■Material and methods describes the plastic dataset, 
the procedure followed for image acquisition and 
elaboration together with the different steps of data 
analysis.
■■ Results shows the classification results obtained 
using Soft PLS-DA algorithm both considering the full 
wavelength range and sparse-based variable selection, 
and also the results of the final implementation of the 
classification tree.
■■ Finally, we report the general conclusions of this study.

Theory
Background
PLS-DA is as an extension of PLS regression adapted to 
operate in a classification framework. Similarly to PLS, the 
independent matrix X is regressed against the dependent 
matrix Y by calculating a new set of LVs, which maximise 
the covariance between X and Y matrices.25,26 In more 
detail, both X and Y matrices can be decomposed as 
follows:

	 X = TPT + E	 (1)

where T, P and E represent the score matrix, the loading 
matrix and the residuals matrix of X, respectively;
	 Y = UCT + G	 (2)

where U is the score matrix, C is the loading matrix and G 
is the residuals matrix referred to Y.
According to PLS, the object variation of the X-block 
expressed by the score matrix T can be used to describe 
Y; therefore Equation 2 can be re-written as follows:

	 Y = TCT + G	 (3)

In particular, the decomposition of X has to be opti-
mised in a manner that T accounts for the variation in X 
which allows the best description of Y. To this aim, for 
each LV a weight vector (w) is calculated which weights 
the original variables according to their contribution in 
explaining the Y matrix. Given these considerations, the 
estimate of Y (Ŷ) can be calculated as follows:

	 Ŷ = XWCT + F = XB + F	 (4)

where W is the weights matrix and B is the matrix of 
regression coefficients.
In the case of PLS-DA, the Y matrix consists of a dummy 

matrix with as many rows as the number of samples and 
as many columns as the number of considered classes. 
This dummy matrix expresses class membership of each 
sample with binary coding: a value equal to 1 indicates 
that an object belongs to the class, while a value equal to 
0 refers to samples not belonging to the class.19,27

Once the PLS model has been calibrated, class assign-
ment of unknown samples is based on the y values 
estimated for each class (ŷ). These values will not be 
exactly equal to 0 or 1, therefore it is necessary to estab-
lish a threshold value so that a new sample is assigned 
to a defined class only if its ŷ value is greater than the 
threshold for that class. The threshold is usually calcu-
lated using the Bayes theorem under the assumption 
that the estimated values for each class follow a Gaussian 
distribution, and these distributions are used to calculate 
the a posteriori probability that a sample belongs to a 
given class.20 In particular, for each class the threshold 
value corresponds to the ŷ value at which the number of 
false positives and false negatives is minimised, that is 
the point where the two probability distributions cross 
(i.e. the point where the a posteriori probability values for 
the two classes are the same).
Usually, class assignment of an unknown sample can 

be done considering two different approaches: either 
choosing the class with the highest probability, or 
comparing the predicted ŷ values with the corresponding 
threshold values. The former strategy represents the stan-
dard discriminant approach, where samples are always 
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assigned to one of the modelled classes. Conversely, if 
the latter approach is used, a sample can have ŷ values 
higher than the corresponding threshold for more than 
one class, or lower than the threshold for all the classes. 
In both these cases, the sample cannot be assigned to 
any class.27 However, in the case of only two classes, 
these two approaches converge to the same results and 
standard PLS-DA algorithm will always attribute a sample 
to one of the classes.
The standard discriminant approach has often been 
criticised due to its limited ability to correctly handle new 
objects not belonging to the target classes.28 In order to 
overcome this issue, extensions of PLS-DA have been 
proposed in the literature, which incorporate a rejection 
option in the classification rule.
These methods usually consist in considering PLS-DA 
as a data compression method rather than a classification 
strategy, and class assignment is performed with a further 
class-modelling step considering distance-based metrics 
calculated on the PLS scores16 or on the PCA scores 
obtained from the decomposition of the Ŷ matrix.29 In 
this manner, class assignment is performed in a rather 
complex multi-step procedure.
Conversely, an alternative approach consists in calcu-

lating a classification rule considering confidence inter-
vals around the ŷ values of each class, and rejecting 
samples outside these intervals.30

Furthermore, it has to be considered that diagnostics 
based on Q residuals can represent an effective tool 
to identify outlier samples, i.e. samples with proper-
ties different from those of the samples used for model 
calibration. These diagnostics are widely used in class-
modelling, for example in the SIMCA algorithm. However, 
Q residuals are rarely incorporated in classification rules 
based on PLS-DA algorithm, even if the computation of 
Q scores from the outcomes of the PLS model is straight-
forward according to the following equation:

	 T
i i iQ e e= 	 (5)

where Qi is the Q score value of the ith sample of matrix X 
and ei is the ith row vector of the residuals matrix E.

Soft PLS-DA
In the present study, a novel algorithm based on PLS-DA 
has been developed in order to combine the advantages 
of classical discriminant analysis with those of class-
modelling techniques; for these reasons it has been 
named Soft PLS-DA. The main idea behind Soft PLS-DA 

is to have a flexible and simple classification tool able to 
maximise the separation between the considered classes 
and, at the same time, to effectively identity possible 
outlier objects (i.e. objects that do not belong to the 
classes included in the classification model), which will be 
automatically not assigned to any class.
In the same manner as PLS-DA, a PLS model is calcu-

lated between the X matrix and the dummy Y matrix, in 
order to maximise the differences between the consid-
ered classes. Then, class assignment of unknown samples 
is based on some additional criteria which allow outlier 
samples to not be assigned to the target classes.
According to the Soft PLS-DA decision rules, class 
assignment of a new sample to a defined class is subjected 
to the following criteria:

■■ having Q residuals falling inside the 99.9 % confidence 
limit of the model.31 The 99.9 % confidence limit has 
been chosen in order to set boundaries large enough 
to consider as much as possible the variability of the 
different classes and, at the same time, being able to 
exclude samples with a very low fit to the model;
■■ having ŷ values falling inside an acceptability range 
for the considered class. More in detail, in addition to 
the threshold value calculated by standard PLS-DA for 
each class g (ytsh1,g), also an upper limit (ytsh2,g) on the 
ŷ values has been introduced, which is calculated as 
follows:

	 2, ˆ ˆ, ,5tsh g y g y gy m s= + ´ 	 (6)

where my^,g and sy^,g are the mean and the standard devi-
ation of the ŷ values of class g calculated on the training 
set samples. Therefore, in order to be assigned to class g, 
an unknown sample must have a ŷ value ranging between 
ytsh1,g and ytsh2,g. The upper limit imposed on the ŷ values 
allows objects found at the extremes of the Gaussian 
probability density functions (PDFs) to be rejected; these 
usually have low values in the PDFs but high a posteriori 
probability for one class according to the Bayes rule. The 
upper limit was set based on preliminary tests performed 
on some representative images;

■■ for classification problems with more than two classes, 
the samples must be unambiguously assigned only to 
one class.
Samples that do not match all the three criteria are not 

assigned to any class and are labelled as “not assigned” 
(NA). In this manner, Soft PLS-DA allows boundaries to 
be drawn around each modelled class which maximise 
the discrimination between the categories of interest and 
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minimise possible false positives due to ambiguous clas-
sifications or to outlier samples.

Material and methods
Plastic dataset
In the present study, we have considered the recyclable 
plastic polymers mainly used for packaging, including 
polyethylene terephthalate (PET), polystyrene (PS), poly-
vinyl chloride (PVC), polypropylene (PP) and polyeth-
ylene (PE), which in turn can be further subdivided in 
high-density polyethylene (HDPE) and low-density poly-
ethylene (LDPE).
Different plastic objects made of the considered poly-

mers have been collected form household waste. In addi-
tion, samples composed of paper and of other types 
of non-recyclable plastics (OTHER), e.g. acrylonitrile 
butadiene styrene (ABS) and polylactic acid (PLA), were 
also considered as possible foreign materials that can be 
found in plastic municipal waste.
The different samples have been manually sorted 
into the corresponding categories based on the Resin 
Identification Code (RIC) reported on the objects.32 The 
RIC is an international coding system comprising a set of 
symbols (labels and numbers) present on plastic products 
and indicating the polymer of which they are composed. 
For example, according to RIC, coding number 1 is associ-
ated to PET, number 2 is associated to HDPE, number 3 
is associated to PVC etc.

Image acquisition
The collected waste samples have been acquired with an 
industrial sorting system consisting of a NIR line scanning 
hyperspectral camera (KUSTA1.9MSI, LLA Instruments) 
mounted over a black conveyor belt and equipped with 
an InGaAs detector array and Zeiss f/2.4, 10 mm optical 
lens. Image acquisition was performed with a frame rate 
equal to 644 Hz and the speed of the conveyor belt 
was equal to 0.84 m s–1. Illumination was provided by 
halogen light bulbs positioned in two parallel illumination 
rows slightly tilted towards each other (PMAmsi, LLA 
Instruments). The hyperspectral images were acquired in 
the NIR range from 1330 nm to 1900 nm with a spectral 
resolution of 6 nm.
The samples were acquired in two acquisition phases 
conducted on different days. In the first phase, hyper-
spectral images containing objects made of the same 

material were acquired. In more detail, two images of 
different objects were acquired for each type of material, 
for a total of 16 hyperspectral images (= 8 materials  2 
replicated images). These images were used as training 
images in the subsequent elaboration steps, in order to 
obtain a library of representative spectra for each mate-
rial type.
In the second acquisition phase, hyperspectral 

images containing samples of two different materials 
were acquired considering all the possible combinations 
between the material types under investigation. On the 
whole, 56 hyperspectral images have been obtained in 
this phase, resulting from two replicate images for each 
combination.
All the hyperspectral images, acquired on the objects 
positioned on the moving conveyor belt, have size equal 
to 41 row pixels  500 column pixels  96 wavelengths. 
For each image, the raw intensity counts were converted 
into reflectance units by means of an internal calibration 
procedure based on the measure of the dark current and 
of a white high reflectance standard. Dark current was 
measured by closing the shutter of the camera, while the 
white reference consisted of an aluminium frame holding 
the calibration material with an average remission factor 
equal to 83.0 %.

Image elaboration
Initially, the 16 images acquired during the first acquisi-
tion phase were analysed by means of PCA after mean 
centring as data preprocessing, in order to segment the 
pixels of the background (black conveyor belt) from those 
belonging to the samples.
After background segmentation, from each training 
image 1000 spectra of the sample and 400 spectra of 
the background were randomly selected. These spectra 
were used to build a training set with size {22,400 
spectra  96 wavelengths}, containing 16,000 repre-
sentative spectra of the considered materials (2000 
spectra for each material type) and 6400 spectra of the 
background. The average spectra of each material type 
calculated from the training set are reported in Figure 
1A, while the average and standard deviation spectra of 
each class are shown in Figure S1 of the Supplementary 
Material.
The images containing samples of two different mate-
rials were used as test images to obtain both a quan-
titative and qualitative evaluation of the classification 
models. For the creation of the test set, some represen-
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tative images have been chosen in order to consider all 
the materials, and Regions of Interest (ROI) were defined 
on these images. From each ROI, the corresponding 
spectra were extracted to create a test set with size 

{21,760 spectra  96 wavelengths}, containing a library 
of spectra with known assignment. Figure 1B shows the 
average spectra of each considered material calculated 
from the test set, while the corresponding average and 

Figure 1. Average spectra of each material type calculated from training and test sets without any pre-
processing (A and B), and after SNV (C and D) and detrend (E and F) as data preprocessing.
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standard deviation spectra are reported in Figure S2 of 
the Supplementary Material.

Data analysis
The training set was initially analysed by means of PCA 
considering both standard normal variate (SNV) and 
detrend as row preprocessing methods. This preliminary 
analysis allowed similarities and differences between 
the considered materials to be identified, and both SNV 
and detrend gave analogous results. The clusters of the 
different materials observed in the PCA score plots essen-
tially reflected similarities and differences of the chemical 
structure of the considered polymers. These results were 
used to develop the structure of the tree-based classifica-
tion model reported in Figure 2. In particular, PCA high-
lighted that the class corresponding to the non-recyclable 
plastic polymers was too heterogenous to be modelled 
into a single class. For this reason, the spectra belonging 
to the OTHER class were not used during model calibra-
tion, but they were used during the final validation of the 
classification tree in order to evaluate the ability of Soft 
PLS-DA algorithm to reject objects belonging to classes 
not considered in model calibration. The classification 
tree reported in Figure 2 is composed of five nodes, each 
corresponding to a classification model calculated with 
Soft PLS-DA algorithm using the training set.
For each node of the tree, the classification models 

have been computed considering both SNV + mean 
centring and detrend + mean centring as data prepro-
cessing methods.

The average spectra of each considered material type 
obtained from both training and test sets preprocessed 
with SNV and detrend are reported in Figures 1C–F.
Classification performances of each single class were 

defined using sensitivity (SENS), i.e. the percentage of 
objects belonging to a given class correctly assigned 
to the corresponding class, specificity (SPEC), i.e. the 
percentage of objects correctly rejected from the class 
model, and efficiency (EFF), i.e. the geometric mean of 
sensitivity and specificity. Furthermore, for an overall 
evaluation of the classification quality of each node, the 
Non-Error Rate (NER) was also considered, which is 
calculated as the arithmetic mean of the SENS values of 
the different classes.33

The proper number of LVs for the Soft PLS-DA models 
has been optimised by maximising the NER value in cross-
validation. In particular, a customised cross-validation 
scheme has been adopted, consisting of two deletion 
groups (i.e., cross-validation groups); during the cross-
validation step one model was therefore calculated using 
the spectra of each deletion group, to predict the class of 
the spectra of the other deletion group.
Each deletion group was defined in order to include 

the spectra belonging to all the considered target classes 
and to keep together all the spectra extracted from the 
same image.
Furthermore, for each node of the classification tree, 

the Soft PLS-DA algorithm has also been coupled with 
a sparse-based variable selection approach in order to 
identify the relevant variables involved in the classifica-
tion. In more detail, the outcomes of the sparse PLS-DA 
(sPLS-DA) algorithm proposed by Lê Cao et al.34–36 were 
subjected to the same constraints for class assignment 
described above for Soft PLS-DA, thus resulting in a 
sparse version of Soft PLS-DA (sparse Soft PLS-DA).
Basically, the main idea of sparse-based methods is 

to perform variable selection by forcing the model coef-
ficients not bringing useful information to be equal to 
zero. Sparse methods represent an extension of the 
corresponding traditional classification or regression 
methods, where sparsity is achieved by adding a penalty 
term to the computation of the model coefficients.37,38 In 
addition to the number of model components (i.e., LVs), 
sparse methods also require the level of sparsity to be 
optimised, which is related to the number of variables 
whose coefficients are set equal to zero in the model.36,39

The sparse-based Soft PLS-DA models were optimised 
considering a maximum number of LVs equal to 10 and 

Figure 2. Tree-structured classification models.
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a number of variables selected for each LV ranging from 
4 to 96 (with a step equal to 4). For each node of the 
classification tree, the best combination between the 
number of LVs and the number of selected variables 
was identified by maximising the NER value estimated in 
cross-validation.
Both Soft PLS-DA and sparse Soft PLS-DA models 

were validated using the test set described above.
Image elaboration and data analysis were performed 

using the PLS_Toolbox software (ver. 8.5, Eigenvector 
Research Inc., USA) and ad hoc routines developed in the 
MATLAB environment (ver. 9.0, The MathWorks, USA). 
The MATLAB routine to run Soft PLS-DA algorithm is 
freely downloadable from http://www.chimslab.unimore.
it/downloads/.

Results
Classification by Soft PLS-DA
Table 1 and Table 2 report the results obtained by 
applying Soft PLS-DA algorithm for each node of the 
classification tree and considering both SNV and detrend 
as row preprocessing methods. For each model, the clas-
sification performances have been evaluated considering, 
for each single class, the number of not-assigned pixel 
spectra and SENS, SPEC and EFF values, while the NER 
values have been calculated as a global measure over all 
the classes. To maintain a concise presentation, Table 1 
shows only the NER values obtained for each node of the 
classification tree, while Table 2 reports the SENS values 
of all the considered classes in each node of the tree.

SNV + mean centring Detrend + mean centring

LV CAL CV TS LV CAL CV TS

NODE 1 3 91.8 87.7 98.4 5 86.1 86.0 84.9

NODE 2 2 94.3 93.6 100.0 5 93.9 92.4 91.1

NODE 3 5 94.7 89.5 100.0 2 97.0 94.7 59.6

NODE 4 4 90.3 90.2 98.9 6 87.7 83.9 98.1

NODE 5 5 90.6 82.9 100.0 2 90.7 85.1 99.9

Table 1. NER values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the 
test set (TS) for each node of the classification tree.

SNV + mean centring Detrend + mean centring

CAL CV TS CAL CV TS

NODE 1
BACKGROUND 91.6 89.7 98.1 96.9 96.6 100.0
SAMPLE 91.9 85.7 98.6 75.3 75.5 69.9

NODE 2
PAPER 98.7 98.8 100.0 100.0 99.9 100.0
PE+PVC+PP 93.5 92.9 100.0 92.3 89.5 96.6
PS+PET 90.6 89.2 100.0 80.8 76.7 50.2

NODE 3
PET 95.2 85.9 100.0 95.4 97.4 76.2
PS 94.3 93.2 100.0 98.6 92.1 43.0

NODE 4
PE 89.8 87.7 99.7 86.2 82.8 97.7
PP 89.5 91.2 97.1 91.6 86.3 99.5
PVC 91.8 91.8 100.0 85.5 82.6 97.1

NODE 5
HDPE 86.6 84.5 100.0 81.8 76.5 99.8
LDPE 94.6 81.3 100.0 99.6 93.7 100.0

Table 2. SENS values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the 
test set (TS) for each node of the classification tree.

http://www.chimslab.unimore.it/downloads/
http://www.chimslab.unimore.it/downloads/
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With few exceptions, SNV preprocessing method 
allowed better classification performances to be 
obtained than detrend, both in cross-validation and in 
prediction of the test set. Indeed, in Node 1, Node 2 
and Node 4 the NER values obtained in cross-valida-
tion from the models calculated with SNV are higher 
than those obtained with detrend, and these results 
were also confirmed from the prediction of the external 
test set. Concerning Node 3, SNV and detrend led to 
similar classification performances in cross-validation, 
but detrend gave a lower NER value in prediction of the 
test set; in particular a SENS value equal to 43.0 % was 
obtained for class PS. Therefore, also for Node 3 SNV 
was the best preprocessing method, since it resulted 
in a more robust classification model. Conversely, in 
Node 5 the two preprocessing methods showed similar 
performances both in cross-validation and in prediction 
of the test set.
Based on these results, SNV can be identified as the 

optimal preprocessing method for all the five nodes of 
the classification tree. Furthermore, it has to be high-
lighted that the use of the same preprocessing method 
for each node of the classification tree represents a great 
advantage from the computational point of view. Indeed, 
the spectra of the hyperspectral images can be row-
preprocessed only once after image acquisition, and the 
preprocessed spectra can then be used for all the nodes 
of the classification tree, resulting in a lower computa-
tional effort.
Figure S3 of the Supplementary Material shows the 

regression vectors of the classification models calculated 
for each node of the tree using SNV as spectral row 
preprocessing. By comparing Figure S3 with Figure 1, 
which reports the average spectra of the different mate-
rial types, it is possible to observe that for each node 
of the tree the relevant variables, i.e. the variables with 
highest absolute values of the regression coefficients, 
generally correspond to the characteristic wavelengths 
of the materials considered in the specific classification 
problem.

Classification by Soft PLD-DA and 
sparse-based variable selection
Since SNV was the optimal row preprocessing method 
for the whole classification tree, the subsequent vari-
able selection step by means of sparse Soft PLS-DA was 
performed considering only SNV + mean centring for each 
node.

Table 3 reports the classification results obtained for 
the five nodes of the classification tree expressed in 
terms of NER vales as a global measurement of the classi-
fication performances of each node, while Table 4 shows 
the SENS values of each modelled class.
Comparing Table 1 with Table 3 and Table 2 with Table 

4, it is possible to observe that, generally, variable selec-
tion improved the classification performances and, at the 
same time, considerably reduced the number of retained 
variables.
The higher improvement in classification performances 
was reached in Node 3 with a NER value in cross-­
validation equal to 94.3 % with respect of a NER value 
equal to 89.5 % obtained considering the full wavelength 

LV
No. 

variables CAL CV TS
NODE 1 4 62 92.7 89.1 99.2

NODE 2 2 8 95.6 95.2 100.0

NODE 3 1 20 97.8 94.3 100.0

NODE 4 4 40 90.3 90.5 98.1

NODE 5 2 6 89.6 81.9 100.0

Table 3. NER values obtained with sparse-based variable 
selection coupled with Soft PLS-DA in calibration (CAL), 
cross-validation (CV) and prediction of the test set (TS) for 
each node of the classification tree.

CAL CV TS

NODE 1
BACKGROUND 92.5 90.5 98.9
SAMPLE 92.8 87.7 99.6

NODE 2
PAPER 100.0 99.8 100.0
PE+PVC+PP 94.6 94.6 100.0
PS+PET 92.3 91.3 100.0

NODE 3
PET 97.4 92.5 100.0
PS 98.2 96.1 100.0

NODE 4
PE 88.4 87.2 94.7
PP 91.9 93.1 99.5
PVC 90.7 91.3 100.0

NODE 5
HDPE 92.9 82.6 100.0
LDPE 86.3 81.3 100.0

Table 4. SENS values obtained with sparse-based variable 
selection coupled with Soft PLS-DA in calibration (CAL), 
cross-validation (CV) and prediction of the test set (TS) for 
each node of the classification tree.
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range. In addition, by considering only the 20 selected 
variables in Node 3, all the test set spectra were correctly 
assigned.
Node 2 is the node with the lower number of selected 

variables, retaining only 8 variables out of the 96 original 
wavelengths. Such a small number of variables enabled 
an increase in the classification performances for all the 
three classes modelled in Node 2 (PAPER, PE+PVC+PP 
and PS+PET), maintaining at the same time the 100.0 % 
of correct assignments for the test set.
Conversely, in Node 5 variable selection led to a slight 

decrease of the classification performances in cross-­
validation; in particular, the SENS value for class HDPE is 
lower than what obtained with the full wavelength range 
(82.6 % vs 84.5 %). Actually, it should be considered that 
Node 5 deals with the classification of HDPE and LDPE, 
which are derived from the same monomer, and the 
difference between these two polymers is only related 
to the degree of branching. Therefore, it is reasonable to 
assume that, for the discrimination between HDPE and 
LDPE, the full wavelength range provides more complete 
information.

Final implementation of the classification tree
Based on the results obtained from the optimisation of 
each single node, the different classification models have 
been assembled together in order to obtain the final 

implementation of the classification tree, which is sche-
matised in Figure 3.
The proposed tree-structured classification model was 
applied to the test set in order to obtain a quantitative 
assessment of its classification performances. During the 
final validation of the model, the spectra belonging to 
the other types of non-recyclable plastics (class OTHER) 
were also included in the test set to evaluate the ability 
of Soft PLS-DA, and of its sparse-based extension, to 
correctly reject spectra not belonging to the modelled 
classes.
The results are summarised in Figure 4, which can be 
seen as a kind of graphical representation of the confu-
sion matrix obtained by applying the classification tree to 
the test set. Indeed, each point in the graph represents 
a spectrum of the test set and it is coloured according to 
the corresponding actual class, while the position of the 
points on the y-axis is based on the class predicted from 
the tree-structured classification model.
The same results are also reported in Table 5 in terms 
of SENS and SPEC values for each considered class, and 
of NER of the overall tree-structured model.
Generally, satisfactory classification results have been 

obtained for all the modelled classes, resulting in a NER 
value equal to 98.4 %. The SENS values are always greater 
than 90 %, and for PS and PVC all the test set spectra 
have been correctly predicted.

Figure 3. Final implementation of the tree-structured classification 
model for plastic waste sorting.
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Concerning the results expressed in terms of speci-
ficity, for all the classes, SPEC values close to 1 were 
obtained, indicating that the classification tree correctly 
rejected the great part of spectra not belonging to 
the considered class. Indeed, Figure 4 shows that the 
majority of the test set spectra belonging to the category 
of other plastics (OTHER), which was not included in the 
classification tree, was correctly rejected from all the 
considered classes and thus labelled as “not-assigned” 
(NA). In more detail, 70.9 % of spectra belonging to 
class OTHER was predicted as NA, while only a minority 
of these spectra from other plastics was erroneously 
assigned to PET and PS classes (12.4 % and 14.7 %, 
respectively).
These results confirm that the proposed tree-­structured 
classification model is able to effectively recognise the 
spectra of the analysed materials, minimising at the same 
time possible false positives due to spectra belonging to 
materials that were not considered during model calibra-
tion.

Furthermore, the classification tree was applied to the 
test images, i.e. to the images containing objects of two 
different materials, in order to evaluate the classification 
performances at the pixel level. As an example, Figure 5 
shows the prediction images obtained from the hyper-
spectral images containing PP + PVC (Figure 5A), PAPER 
+ HDPE (Figure 5B), LDPE + OTHER (Figure 5C) and PET 
+ PS (Figure 5D). In order to facilitate the interpretation 
of the results, the RGB images of the corresponding 
waste samples have also been included together with the 
prediction images. In the prediction images, all the pixels 
predicted as belonging to a defined class have been 
coloured according to the legend. In particular, grey is 
associated with those pixels that have not been assigned 
to any class.
Based on the prediction images, it is possible to 

observe that the majority of the pixels of each single 
object are correctly assigned to the corresponding mate-
rial type. Misclassifications mainly occur at the edges of 
the objects or in some areas of the background, due to 

Figure 4. Prediction results obtained from the final implementation of the tree-structured classification 
model.

HDPE LDPE PAPER PET PP PS PVC BACK
SENS % 99.9 92.1 96.7 99.8 99.5 100.0 100.0 98.9
SPEC % 100.0 100.0 100.0 97.7 100.0 97.4 100.0 99.2

NER % 98.4

Table 5. Results in prediction obtained by applying the classification tree to the test set. BACK is the abbre-
viation for background.
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the noise caused by specular reflections of the conveyor 
belt.
In more detail, in Figure 5A and Figure 5D all the pixels 

of the objects depicted in the images are correctly classi-
fied, while in Figure 5B the pixels of the larger HDPE bottle 
located at its upper edge are not assigned. Considering 
Figure 5C, the majority of the pixels of the LDPE object 
are correctly assigned, while some of them are classified 
as HDPE or not assigned. In the same image, the objects 
made of plastic polymers not included in the classifica-
tion model have been globally not assigned to any class.

Conclusions
In practical applications of hyperspectral imaging to 
classification aims, e.g. in sorting plants, it is necessary 

to implement classification methods able to effectively 
handle a large number of classes, to correctly classify 
samples belonging to the considered categories, and to 
correctly recognise and reject possible foreign objects.
The present study was aimed at the development of 
a classification rule for the discrimination of multiple 
categories through a tree-structured model, in which 
the classification at each node was performed by Soft 
PLS-DA, an extension of the PLS-DA algorithm. The 
basic engine of Soft PLS-DA is the same as PLS-DA, but 
class assignment is subjected to some additional criteria 
involving the calculation of further thresholds based on 
Q residuals and on y predictions. These additional thresh-
olds allow the rejection of unknown samples which are 
not compliant with the classes of interest.
The proposed approach was tested on a case study 
related to the discrimination of the different recyclable 

Figure 5. Prediction images and corresponding RGB images of the samples: PP+PVC (A), 
PAPER+HDPE (B), LDPE+OTHER (C) and PET+PS (D).
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plastic polymers that are commonly used for packaging. 
On the one hand, the use of a tree-structured classifica-
tion model allowed eight different classes to be efficiently 
handled, a situation in which a single discrimination step 
would rarely give satisfactory results. On the other hand, 
Soft PLS-DA proved to be a flexible algorithm thanks to 
the possibility of rejecting foreign objects, whose pres-
ence is a plausible situation in recycling plants, since it is 
not possible to completely control the incoming materials. 
Furthermore, coupling Soft-PLS-DA with a sparse-based 
variable selection allowed us to improve the classification 
performances and to decrease the number of spectral 
variables, reducing at the same time the computational 
efforts.
The external validation of the classification tree demon-
strated the effectiveness of the proposed approach, 
reaching a NER value equal to 98.4 %. These satisfactory 
results were also confirmed by the pixel-level prediction 
performed on a set of test images.
A further improvement of this application will consist 
in the extension of the prediction from a pixel-level to an 
object-level approach, by assigning each plastic sample 
to a defined class based on the class attribution of the 
majority of its pixels. In the specific case under inves-
tigation, this task can be accomplished by coupling the 
hyperspectral camera with an RGB camera for object 
shape detection. Indeed, the much higher spatial reso-
lution of RGB imaging could allow to better define the 
edges of each imaged object, to identify labels partly 
covering the samples, and to further classify the samples 
of a given plastic material based on its colour.
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