
Correspondence
Ph. Vermeulen (p.vermeulen@cra.wallonie.be)
Received: 15 July 2016
Revised: 15 December 2016
Accepted: 15 December 2016
Publication: 20 January 2017
doi: 10.1255/jsi.2017.a1
ISSN: 2040-4565	

Citation
Ph. Vermeulen et al., “Assessment of pesticide coating on cereal 
seeds by near infrared hyperspectral imaging“, J. Spectral Imaging 6, a1 
(2017). doi: 10.1255/jsi.2017.a1	
	
© 2017 The Authors
This licence permits you to use, share, copy and redistribute the paper 
in any medium or any format provided that a full citation to the original 
paper in this journal is given, the use is not for commercial purposes 
and the paper is not changed in any way.

1Ph. Vermeulen et al., J. Spectral Imaging 6, a1 (2017)
volume 1 /  2010
ISSN  2040-4565

In thIs Issue:

spectral preprocessing to compensate for packaging film    /    using neural nets to invert 
the PROSAIL canopy model

JOURNAL OF
SPECTRAL
IMAGING

JsI
Paper Presented at IASIM 2016, July 2016, Chamonix, FrancePeer Reviewed Paper openaccess

Assessment of pesticide coating on cereal 
seeds by near infrared hyperspectral imaging

Ph. Vermeulen,a P. Flémal,b O. Pigeon,c P. Dardenne,a J.A. Fernández Piernaa and V. Baetena,b

aFood and Feed Quality Unit, Walloon Agricultural Research Centre (CRA-W), Henseval building, 24, chaussée de Namur, 5030 Gembloux, 
Belgium. E-mail: p.vermeulen@cra.wallonie.be, FoodFeedQuality@cra.wallonie.be
bFaculty of Bioscience Engineering & Institute of Life Sciences, UCL, Croix du Sud, 2 bte L7.05.08 1348 Louvain-la-Neuve, Belgium
cPlant Protection Products and Biocides Physico-chemistry and Residues Unit, Walloon Agricultural Research Centre (CRA-W), Carson building, 
11, rue de Bordia, 5030 Gembloux, Belgium

Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC), are used as reference methods to assess seed 

quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, 

destructive and require a substantial amount of solvent, among others. Near infrared (NIR) spectroscopy seems to be an interesting alternative 

technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess 

the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI) by analysing, on a seed-by-seed basis, several seeds 

simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares 

discriminant analysis (PLS-DA)—models and regression—partial least squares (PLS)—models were developed. The results obtained by NIR-HSI are 

compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging 

to assess the quality/homogeneity of the pesticide coating on seeds.
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Introduction
Seed treatment with pesticides requires the active 
substances to be applied at the target rate and homo-
geneously distributed between seeds of the same batch. 
Indeed, a lower dose may lead to insufficient plant protec-
tion while an overdose can increase the risk of phyto-
toxicity. Nowadays, chromatographic methods, such as 
ultra performance liquid chromatography (UPLC), are 
the preferred reference methods for the quality control 
of the pesticide coating. They are selective, sensitive, 
accurate and repeatable, but also expensive, destructive 
and time consuming. Moreover, they require a substantial 

amount of solvent. Alternative methods that avoid these 
drawbacks are needed. In this context, near infrared (NIR) 
spectroscopy seems to be an interesting technique to 
control the quality of seed treatment. Several studies have 
shown the potential of vibrational spectroscopy to detect 
pesticide residues in food using NIR spectroscopy1 and 
Raman2 technology. The potential of NIR spectroscopy 
has also been demonstrated to classify active principles 
and to assess their concentration for the quality control 
of commercial pesticide formulations.3 Other studies4,5 
have proved that NIR spectroscopy used with a seed-
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by-seed sample presentation allows the active substance 
concentration on the treated seeds to be quantified.

The objective of this study6 was to show the potential 
of near infrared hyperspectral imaging (NIR-HSI) to assess 
the quality of pesticide coating treatment on cereal seeds. 
For this, five studies were performed, namely i) the identi-
fication of seed species, ii) the identification of the type of 
pesticide applied to the seeds, iii) the uniformity between 
seed batches based on the average dose of pesticides, iv) 
the consistency of treatment between seeds from the 
same batch based on the seed-by-seed dose and v) the 
homogeneity of the pesticide coating at the seed level. 
Discriminant chemometrics tools, namely partial least 
squares discriminant analysis (PLS-DA), and regression 
methods, partial least squares (PLS), were applied in order 
to characterise each of the studies. The results obtained 
by NIR-HSI were compared to the results obtained with 
classical NIR spectroscopy and UPLC.

Materials and methods
Seed samples
For this experiment, three cereal species (wheat, barley 
and spelt) were studied, as well as three groups of pesti-
cide formulations characterised by three main active 
ingredients, prochloraz/triticonazole, prothioconazole 
and fludioxonil. In total, 87 samples were collected, most 
of them were coated directly by the seeds’ producers and 
labelled, providing information on the pesticide formu-
lation. Then two different studies were performed: in 
the first, in order to assess the homogeneity inter seed 
batches, all the samples were analysed in bulk (ring cup 
or eight seeds) using NIR-HSI (Burgermetrics, Latvia) 
as well as UPLC (Waters, USA) and NIR spectroscopy 
(Bruker-MPA, Germany) for comparison. In the second 
study, four samples, selected according to low or high 
pesticide dose, were analysed seed by seed. In total, 24 
single seeds from each sample were analysed using UPLC 
and NIR-HSI in order to assess the homogeneity intra 
seed batches.

Reference method
Chromatographic methods are the reference methods 
used to assess the pesticide content. In this study, anal-
yses were performed using ultra performance liquid 
chromatography (UPLC, Waters, USA) in order to quan-
tify the active ingredients (prochloraz/triticonazole 

and prothioconazole). The active ingredient content is 
expressed in g of active ingredient per 100 kg of seed, 
taking into account the weight of the seed bulk for the 
analysis of the average dose or the weight of the seed 
for the analysis of the seed-by-seed dose. For the group 
treated with prochloraz/triticonazole, the sum of each 
active ingredient was calculated. The final results were 
expressed in % of the target dose which are 16 g/100 kg 
(12 g/100 kg for prochloraz + 4 g/100 kg for triticonazole) 
and 10 g/100 kg for prothioconazole.

NIR hyperspectral imaging and chemometrics
Hyperspectral images were collected using an NIR hyper-
spectral line scan instrument combined with a conveyor 
belt. All images consisted of lines of 320 pixels that were 
acquired at 209 wavelength channels (1100–2400 nm). 
This instrument is described in detail by Vermeulen et al.7

The image treatment involved building libraries for each 
class of species, treated/not treated status and group of 
pesticides. To extract the data from the image, a mask 
to isolate the seeds was built. The first step consisted 
of detecting and removing the pixels/spectra in the 

Figure 1. NIR hyperspectral imaging system and multi 
seeds presentation to the conveyor belt (eight seeds per 
sample).
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image that showed a saturation of the absorbance corre-
sponding to the conveyor belt. Then, the density-based 
spatial clustering of applications with noise (DBSCAN) 
method was applied to study the neighbourhood of the 
pixels detected as cereal seed.8 This technique is one 
of the most common clustering algorithms. It groups 
together points that are closely packed together, i.e. with 
many nearby neighbours, and marking as outliers all those 
points that lie alone in low-density regions, i.e. whose 
nearest neighbours are too far away. After application 
of DBSCAN, for each defined cluster (seed), the mean 
spectra were calculated and used to build the libraries.

Various chemometric methods were then applied in 
order to extract the maximum amount of information 
from the spectral data. The unsupervised technique of 
principal component analysis (PCA) was used to obtain 
information on the natural separation between spectra. 
Then two supervised approaches were developed: one 

to perform classification of seed samples using PLS-DA 
using the predefined groups as reference and another 
to perform quantitative analysis of pesticide applied on 
the seeds using PLS and with UPLC values as reference.9 
In order to validate the models built, around 80% of 
samples were selected for model construction (calibra-
tion set) and 20% as validation set. The samples were 
selected in order to browse the variability in terms of 
pesticide coating and varieties. The number of samples is 
presented in Tables 1 and 2 according to the developed 
models. All the spectra were pre-processed using stan-
dard normal variate (SNV) and first derivative Savitzky–
Golay (window = 5, polynomial = 2). The results of the 
discrimination models are expressed in different ways. 
Sensitivity refers to the percentage of samples from the 
class studied that have been correctly classified by the 
model. Specificity refers to the percentage of samples not 
from the class studied that have been correctly classified 

NIR spectroscopy
Wheat Barley Spelt

T NT T NT T NT
Calibration nc 48 3 14 3 2 2

T 100 0 100 0 100 0
NT 0 100 0 100 0 100

Cross-validation T 100 0 100 0 100 0
NT 0 100 0 100 0 100

Validation nv 8 4 1

T 100 100 100
NT 0 0 0

NIR hyperspectral imaging
 
 

Wheat Barley Spelt
T NT T NT T NT

Calibration nc (×8 seeds) 48 3 14 3 2 2

T 97 4 89 17 100 7
NT 3 96 11 83 0 93

Cross-validation T 96 4 87 17 94 14
NT 4 96 13 83 6 86

Validation nv (×8 seeds) 8 4 1

T 97 87 100
NT 3 12 0

nc, nv: number of samples for calibration and validation, respectively; T: Treated; NT: not treated

Table 1. Performance of the PLS-DA equations discriminating the T/NT status of the seeds bulks according to the species using 
NIR-HSI in comparison to NIR spectroscopy.
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by the model. The performance of the PLS models is 
assessed in terms of the RMSEP (root mean square error 
of prediction) and the RPDP (ratio between the standard 
error on reference values of the validation set and the 
RMSEP). All data treatment was carried out using Matlab 
7.5.0 (R2007b) and the PLS toolbox 7.0.2.9

Results and discussion
PLS-DA discrimination models
NIR spectra of treated and not treated seeds from wheat, 
barley and spelt obtained with a hyperspectral camera 
are presented in Figure 2. The main differences between 
species are that the seed husk is thicker in spelt and 
barley than wheat kernels, and within the wavelength 
range between 1650 nm and 1800 nm there are differ-
ences in relation to the cellulose and starch content.10 
The differences between treated and not treated seeds 
within each species are less identifiable on raw spectra.

As a first step, the unsupervised technique PCA was 
applied to the data to get some indication about the 
natural grouping of the seeds. PCA was able easily to 
distinguish the different species (wheat, barley and spelt) 
and the treated/not treated (T/NT) status of the seeds. 
PCA also highlighted some trends to distinguish three 
groups of pesticide in relation to the main active ingre-

dient. Based on this information, in a second step, a 
dichotomist classification tree could be built where each 
node of the tree corresponded to a PLS-DA model for 
a specific group of seeds.11 In a first level, a PLS-DA 
model discriminating the three species was built; then, as 
second level, for each of them, a PLS-DA model discrimi-
nating the T/NT status of the seeds was constructed and 
finally, as third level, for the treated set, a PLS-DA model 
discriminating the three groups of pesticides applied to 
the seeds was also developed. Models were developed 

% Target dose % Samples
Groups of 
pesticide Active ingredient n mean sd min max cv <30% >30% ±30%
Ultra performance liquid chromatography

Group 1
Prochloraz + 
triticonazole

2 73.9 8.4 68.0 79.9 11.4 50 0 50

Group 2 Prothioconazole 5 52.1 15.1 34.2 66.9 29.0 100 0 100
NIR spectroscopy

Group 1
Prochloraz + 
triticonazole

2 58.9 19.2 45.3 72.4 32.5 50 0 50

Group 2 Prothioconazole 5 58.1 19.0 40.1 83.2 32.7 60 0 60
NIR hyperspectral imaging

Group 1
Prochloraz + 
triticonazole

2 59.3 24.4 42.1 76.6 41.1 50 0 50

Group 2 Prothioconazole 5 48.4 14.5 32.4 66.1 30.0 100 0 100

n: Number of samples; sd: standard deviation; cv: coefficient of variation

Table 2. % pesticide target dose and % underdosing and overdose of barley seeds batches using UPLC, NIR spectroscopy and 
NIR-HSI.

Figure 2. NIR-HSI spectra of treated (T) and not treated 
(NT) seeds from wheat, barley and spelt.
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on mean spectra by sample for the NIR spectroscopy 
data and on mean spectra by seed for the NIR-HSI data.

PLS-DA models allow classification of the seed bulks 
according to the species (wheat, barley and spelt) with 
a sensitivity of 100% whichever the instrument (NIR or 
NIR-HSI). Regarding the T/NT status, Table 1 shows the 
performance of the PLS-DA equations. In comparison 
to NIR spectroscopy (sensitivity = 100%), the sensitivity 
using NIR-HSI is lower and comprised between 87% and 
100% in validation (model at seed level). The discrimina-
tion according to the type of pesticide allows differen-
tiating the groups with a sensitivity between 75% and 
100% using NIR spectroscopy and between 25% and 
93% using NIR-HSI (results not shown).

Compared to NIR spectroscopy, NIR hyperspectral 
imaging provides additional information on the pres-
ence of cereal seeds mixture in a batch, and on the pres-
ence of untreated or not correctly treated seeds in a 
treated seeds batch. Figure 3 shows RGB pictures and 
corresponding predicted NIR images for one wheat seed 
and one barley seed not correctly coated with pesticide. 
Pixels detected as treated using the PLS-DA model are 
represented in white and pixels detected as untreated 
in grey.

PLS regression models
PLS regression models were built using UPLC to deter-
mine the reference values in order to assess the quan-
tity of pesticide applied to the seeds. The PLS model 

built from barley seed batches treated by different active 
ingredients produced, for the validation set, a RMSEP 
of 2.95 (RPDP = 1.28) using classical NIR spectroscopy 
and of 3.49 (RPDP = 1.08) for NIR-HSI. The PLS model 
built from seed-by-seed produced using NIR-HSI, for the 
validation set, a RMSEP of 2.34 and 6.75 g of active ingre-
dient per 100 kg of seed, and a RPDP = 1.67 and 1.45 on 
barley and wheat, respectively. Based on these results, 
the regression PLS models developed in this study allow 
classifying the treated seeds into two groups: underdosed 
and overdosed. According to the guidelines provided by 
the Pesticide Safety Directorate (PSD), the dose applied 
to the seeds should be ±30% around the targeted dose.12 
Therefore, the two groups were defined as follows: under-
dosing (<30%) and overdose (>30%). Table 2 shows the 
% target dose results obtained on barley seeds batches 
treated by two different active ingredients, using UPLC, 
NIR spectroscopy and NIR-HSI. 50% of seed batches 
treated with prochloraz and triticonazole were detected 
as underdosed whatever the method used. For the seeds 
batches treated with prothioconazole, 100%, 60% and 
100% of seeds batches were underdosed using the three 
methods, respectively.

Table 3 shows the % target dose results obtained on 
wheat/barley single seeds sets using UPLC and NIR-HSI. 
For the wheat samples 1 and 2, 37% and 100% of the 
seeds were overdosed or underdosed using UPLC and 
21% and 96%, respectively, using NIR-HSI. For the barley 
samples 3 and 4, 87% and 71% of the seeds were over-

Figure 3. RGB pictures and predicted images showing on single seeds (wheat and barley) pixels detected as treated in 
white and pixels detected as untreated in grey.
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dosed or underdosed using UPLC and 87% and 79%, 
respectively, using NIR-HSI.

Conclusions
The application of chemometrics to NIR hyperspectral 
images offers new prospects for the quality control of 
the coating efficiency of pesticides on seeds. The study 
shows that PLS-DA models allow sorting the seeds based 
on the species (i), on the treated/untreated status and in 
some cases on the type of pesticide (ii). On another hand, 
the regression models allow classifying the treated seeds 
into two groups according to the average dose of pesti-
cides: underdosing and overdose (iii). This methodology 
allows also the pesticide coating homogeneity between 
seeds inside one batch to be assessed (iv), and also the 
pesticide coating homogeneity at the seed level to be 
assessed (v).
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