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The emergence of lightweight full-frame hyperspectral cameras is destined to enable autonomous search vehicles in the air, on the 
ground and in water. Self-contained and long-endurance systems will yield important new applications, for example, in emergency 
response and the timely identification of environmental hazards. One missing capability is rapid classification of hyperspectral scenes 
so that search vehicles can immediately take actions to verify potential targets. Onsite verifications minimise false positives and pre-
clude the expense of repeat missions. Verifications will require enhanced image quality, which is achievable by either moving closer to 
the potential target or by adjusting the optical system. Such a solution, however, is currently impractical for small mobile platforms 
with finite energy sources. Rapid classifications with current methods demand large computing capacity that will quickly deplete the 
on-board battery or fuel. To develop the missing capability, the authors propose a low-complexity hyperspectral image classifier that 
approaches the performance of prevalent classifiers. This research determines that the new method will require at least 19-fold less 
computing capacity than the prevalent classifier. To assess relative performances, the authors developed a benchmark that compares 
a statistic of library endmember separability in their respective feature spaces.
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Introduction
The recent emergence of golf-ball size hyperspectral cameras 
that weigh less than a tennis ball will create new capabilities 
that shift the paradigm in remote sensing. These full-frame 
cameras1 also have relatively low power consumption. Hence, 
they are suitable for integration into small mobile platforms 
that could navigate autonomously on the surface, in the air 
or in water.2 For a given spatial resolution, hyperspectral 
imaging offers the benefit of high spectral resolution to mini-
mise missed detections and maximise the accuracy of target 
identifications.3 The possibility of adjusting spatial resolution 
to verify target detections while in operation will preclude the 

expense of repeat missions to recheck potential targets after 
offline image processing. The ability to achieve resolution 
agility will also compensate for trading off some theoretical 
accuracy for lower classification complexity. Organisations can 
use such autonomous search systems for many new applica-
tions. A few of the most notable are emergency response, 
post-disaster damage assessment, environmental hazard (e.g. 
oil spill or chemical release) detection and the performance 
evaluation of transportation systems.4

To conduct verifications in situ, the system must quickly 
classify large-scale hyperspectral scenes to identify poten-
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tial targets, and then be capable of enhancing the spatial 
resolution of selected areas by moving closer or adapting the 
optical system. The achievable rate of hyperspectral image 
classification will dictate the maximum search speed and 
coverage. Adding computing capacity could accelerate the 
execution of existing classifiers, but doing so would deplete 
on-board energy supplies more quickly, reducing ground 
coverage. Hence, the main idea of this paper is to develop a 
rapid hyperspectral classifier to enable small, agile and adap-
tive autonomous search systems. Subsequently, the following 
are the main objectives of this research:
1)	 to develop a simple hyperspectral image classifier that 

requires substantially less computing capacity than existing 
high-performance classifiers.

2)	 to identify a method of benchmarking the theoretical accu-
racy of the simple classifier relative to the prevalent classi-
fiers that avoids the common and costly approach of imme-
diately conducting expensive ground truth experiments.

3)	 to identify a method of estimating and comparing the 
absolute and relative computational complexities of the 
proposed empirical and the prevalent classifier.

To set the scene for achieving these objectives, the next 
section will review the scope of existing methods to classify 
hyperspectral images and to characterise their overall and 
relative computational complexities. The third section will 
achieve the first objective by developing the new classifier 
using an empirical formulation that hinges on the energy of 
wavelength rate changes across the spectrum. The fourth 
section will achieve the second objective by utilising sepa-
rability analysis. This method uses typical ground samples 
from existing spectral libraries to compare the theoretical 
false positive potential of the new classifier with that of 
the prevailing classifier that has known performance. The 
fifth section will achieve the third objective listed above 
by introducing a new method of benchmarking computa-
tional complexity that is most appropriate for digital image 
processing architectures. The sixth section will use the 
benchmarks to compare the theoretical performance of the 
proposed and the prevalent classifier, within the context of a 
case study. The final section will summarise and conclude the 
research, demonstrating that the theoretical approach has 
successfully achieved the performance benchmarking objec-
tives with existing endmember libraries as a first vetting step 
to avoid the common approach of incurring upfront expenses 
to conduct extensive field data collection to evaluate a new 
classifier.

Review of existing methods
Existing hyperspectral libraries5 contain the spectral signature 
of target materials obtained from ground truth data. These 
signatures are so-called library endmembers because of their 
careful measurements and spectral purity. Noise and distor-
tions from the data collection equipment and the long path 
lengths from remote sensing distorts the spectral signature 

of captured images. Therefore, the main purpose of a hyper-
spectral image classifier is to associate each noisy hyper-pixel 
of the image to an endmember (supervised methods) or into 
clusters (unsupervised methods), based on some measure of 
similarity.

The Euclidean n-space distance is one of the most popular 
measures of similarity.6 Therefore, the average separation 
distance of endmembers (separability) in a given feature 
space is a predictor of the potential for a candidate classi-
fier to produce false positives at some level of noise. Hence, 
comparing the proportional separability of a fixed sample of 
library endmembers within the feature space of the candidate 
classifier and the feature space of a classifier with known 
performance offers a first step in vetting their potential perfor-
mance with actual field data. The common approach to eval-
uate a new classifier is to collect field data immediately to 
assess its accuracy. However, the alternative of benchmarking 
the theoretical performance of the new classifier against the 
performance of a prevalent classifier with known field accu-
racy characteristics will minimise the risks of incurring the 
high cost of data collection to vet a potentially useless clas-
sifier. This approach is analogous to the classic methods of 
evaluating the theoretical bit-error-rate (BER) performance 
of information encoding schemes as a function of signal-to-
noise ratio (SNR). The separability analysis of this research 
uses the same finite sample of library endmembers that typi-
fies a scene containing the target material, for example spilled 
crude oil, and the contaminated materials such as soil, water, 
snow and vegetation.

Methods of image classification vary in performance and 
computational complexity as a function of both the number of 
hyper-pixels P and the number of spectral bands N. Methods 
of supervised classification use statistical and machine 
learning techniques to establish their measures of similarity. 
The most popular methods are spectral angle mapper (SAM), 
minimum distance classifier (MDC), maximum likelihood 
classifier (MLC), spectral information divergence (SID) and 
spectral correlation mapper (SCM). The SAM is the preva-
lent method. The computationally complexities of present 
supervised methods range from O(N2) to O(N3). Methods of 
unsupervised classification use techniques such as prin-
ciple component analysis (PCA), independent component 
analysis (ICA) and singular value decomposition (SVD); they 
are at least O(PN2 + N3) computationally complex.7 Algorithms 
such as the iterative self-organising data analysis technique 
(ISODATA) assign hyper-pixels with similar characteristics 
into clusters. Convergence depends on the heuristics of 
setting a threshold for the number of endmember re-assign-
ments. Such algorithms are O(PKN2I) complex, where K is 
the number of clusters and I is the number of iterations.8 
To minimise their computational complexity, analysts typi-
cally incorporate methods of feature selection to identify 
a minimum number of subset bands that would maintain 
some measure of sufficiency in class separability. However, 
the feature selection algorithms themselves typically have 
O(PNK) complexity.9
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The proposed rapid classifier
We propose a new method of rapid classification based on 
empirical influences from both supervised and unsupervised 
techniques. The unsupervised aspect is a feature extrac-
tion that operates once per new hyper-pixel acquired and 
once per library endmember. The supervised influence is a 
radial or a rectangular distance threshold comparison in a 
two-dimensional (2D) feature space. The method precom-
putes the features for each available library endmember 
for comparison with features of captured hyper-pixels. 
Hence, the extracted endmember features could occupy 
a much smaller amount of digital memory than the entire 
library of endmember signatures. The reduced computa-
tional complexities of one-time feature extraction per new 
hyper-pixel, and the simpler similarity comparisons with 
endmember features enable the potential for real-time clas-
sification.

Empirical feature extraction
The typical spectral library contains a list of endmembers 
represented as albedo values for each of the available spectral 
bands. The albedo is a measure of the portion of incident solar 
energy reflected from a material. This simple statistic is still 
powerful, relevant and very important. NASA’s earth obser-
vation satellites regularly measure and report the average 
albedo of the earth’s surface in the visible wavelength ranges. 
Figure 1 plots the albedo as a function of the spectral band for 
typical ground cover materials.5

We modify the albedo to improve its effectiveness when using 
signatures of different signature lengths and spectral resolu-
tions from the same or multiple libraries. We also designed 
a second feature based on a heuristic that summarises the 
waviness of the signature. Together, these two features form 
a 2D feature space.

The wavelength normalised average albedo
The average albedo μg of a spectral signature g is
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where the albedo in spectral band n is gn. The wavelength 
normalised average albedo (AVN) is
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where lH and lL are the highest and lowest wavelength bands, 
respectively. The normalisation per wavelength band facili-
tates comparisons between endmembers with different spec-
tral resolutions and bandwidths, potentially from combining 
different libraries. Hence, normalisation accommodates band 
selection methods that attempt to eliminate wavelength chan-
nels that do not appreciably decrease the separability between 
selected endmembers.

The wavelength sensitivity index
We call the new feature the wavelength sensitivity index (WSI) 
because it characterises the shape or waviness of a spectral 
signature. We define the corresponding wavelength sensitivity 
transform as
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where Ws is the WSI, and ln is the centre of each available 
wavelength band in units of micrometres. The origin of the 
WSI is purely empirical. Its formulation is fundamentally a 
measure of the band-normalised energy of the wavelength 
slope signature. Conceivably, this definition could include 
higher order derivatives instead of or in addition to the wave-
length slope, but at the expense of increasing computational 
complexity. The weight ln of the wavelength slope maximises 
the separability of materials that might have similar wave-
length slope energies in different portions of the spectrum. 
The fact that the weight tends to emphasise the wavelength 
slopes at the higher end of the spectrum is inconsequential 
because of the feature space normalisation. The authors 
have previously reported4 on other measures of waviness 
such as the normalised standard deviation, which is less 
effective and entropy, which is substantially more computa-
tionally complex.

A potential limitation of the WSI method could be the 
reduced separability of materials that have slope signatures 
in different portions of the spectrum and with just the right 
magnitudes to equalise their single-dimensional WSI feature. 
However, for such a hypothetical case, it is also possible that 
the {AVN, WSI} feature pair will compensate to increase the 
two-dimensional separability. Therefore, without an exhaus-
tive separability analysis that involves all materials known to 
man, the authors recommend using this method to test appli-
cation specific targets, for example spilled crude oil among 
common contaminated materials such as soil, snow, water 
and vegetation.

Figure 1. Spectral signatures for typical ground cover.
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Distance measure
The wavelength sensitivity classifier (WSC) computes {AVN, 
WSI} pairs for each hyper-pixel of the acquired image frame 
and compares their proximity to target endmembers. Although 
other distance measures are possible, we elected to use the 
Euclidian distance because of its simplicity. The Euclidian or 
radial distance DE is

	 ( ) ( )22

E x x y yD g h g h= - + - 	 (4)

where g and h are the extracted feature sets; the x and y 
components are the {AVN, WSI} features for any two materials.

The endmember samples for separability analysis are 15 
typical ground cover materials from the ASTER Spectral 
Library.5 Figure 2 shows the result of applying the WSC to the 
endmember sample set. The WSC feature space assigns the 
normalised AVN and WSI to the horizontal and vertical axis, 
respectively. At small zenith angles, materials of the aquatic 
class are highly absorptive throughout the spectral region. This 
characteristic places water and ice at an extreme lower corner 
of the feature space. Conversely, snow of different consistency 
is typically highly reflective in the visible region and varies in 
albedo at longer wavelengths. Those feature combinations 
place it near the centre of the feature space. Materials of 
the hydrocarbon class exhibit a combination of high average 
reflectivity and high wavelength sensitivity that places it at the 
extreme upper-right corner of the feature space.

By inspection, the WSC appears to separate hydro-
carbon target materials from soil and snow reasonably well. 
Conversely, materials within the same macro-class, such 
as evergreen trees and green grass, exhibit less separability. 
Hence, applications that need to distinguish among similar 
materials should use a different type of classifier that is 
likely more computationally or dimensionally complex. This 
limitation of the WSC points to a trade-off in computational 
complexity and intra-class separability. This scenario analysis 
indicates that the rapid classification capability of the WSC 

will be best suited for custom applications that search for 
high contrast targets within the scene. Hence, in addition to oil 
spills (on snow, water, vegetation or soil), the WSC would be 
appropriate for tracking vehicles on paved or unpaved roads, 
and for tracking vessels on water. The primary strength of the 
WSC is that it allows for immediate repositioning of robotic 
vehicles to obtain higher spatial or directional resolution for 
target verification. This resolution agility will likely compen-
sate for any loss of classification accuracy relative to the more 
computationally complex approaches such as SAM or SVD.

Proposed performance 
benchmark
This research defines the separability of a classifier as the 
average of the normalised separation distance in its feature 
space, for all target and contaminated material combinations 
of the selected sample of library endmembers. Normalising 
the feature space distance provides a fair means of bench-
marking the potential accuracy of classifications relative to 
the anticipated distance errors in hyper-pixel assignments. 
Figure 3 graphically illustrates the concept. It shows a hypo-
thetical distribution of the normalised distances between all 
combination of endmembers in the respective feature spaces 
of two different classifiers, A and B.

The interval of uncertainty represents the expected normal-
ised distance deviations of candidate hyper-pixel distances 
from their endmembers, for example with less than 5% signif-
icance. This normalised deviation threshold is analogous to 
an acceptable noise interval for hyper-pixel assignments. For 
the same set of library endmembers, the mean is closer to the 
noise interval for Classifier A than for Classifier B. Therefore, 
the former has a greater potential for misclassifications than 
the latter. Alternatively, Classifier B could tolerate a higher 
noise level than Classifier A could. Consequently, Classifier B 

Figure 2. WSC feature space for typical ground cover materials.
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has the potential to classify more of the hyperspectral scene 
than Classifier A could. In either case, a larger ratio of average 
normalised separation distance to an arbitrary interval of 
uncertainty is desirable.

As mentioned earlier, it is important to consider this bench-
marking approach in analogy to the classic approach of 
comparing the theoretical SNR requirements of different data 
encoding methods to achieve some desired level of decoding 
accuracy. That is, this theoretical performance bound is a first 
indicator of the potential performance of the candidate clas-
sifier, and it does not replace the eventual need to conduct 
extensive field studies with ground truth data. The primary 
benefit of this first-step vetting is to benchmark the theoret-
ical performance of new methods relative to those of existing 
methods of known performance levels to assess the value 
of later conducting expensive field data collection for final 
performance characterisations.

Proposed measure of 
computational complexity
This section details new benchmark for computational 
complexity that is appropriate for computer architectures that 
manufacturers optimise to process images at high speed.

The multiply-accumulate complexity
We define a unit of computational capacity P[D] as the 
multiply-accumulate complexity (MACC), where D is the 
number of clock cycles that a model requires when imple-
mented on processors capable of single-cycle multiple-accu-
mulate (MAC) operations. The typical digital signal processor 
(DSP) and some alternative architectures optimised for mobile 
devices implement a MAC operation within a single instruction 
cycle. However, they implement divisions using a series of bit 
shifting and comparison operations that amount to approxi-
mately 42 clock cycles for a 32-bit signed division.10 The MACC 
notation is more convenient than the Big-O notation to bench-
mark the computing time on processors optimised for signal 
and image processing. As is customary with the Big-O nota-
tion, the MACC ignores operations that do not include multipli-
cations, such as additions or comparisons (subtractions). The 
MACC also excludes divisions and multiplications by integer 
constants that are powers of two because DSPs can calculate 

those using single-cycle bit-shifting operations that consume 
negligible resources. Additionally, the MACC excludes opera-
tions that algorithms can pre-compute and store in memory 
for later use. For instance, algorithms can pre-compute oper-
ations that involve only library endmembers. Furthermore, the 
MACC excludes computations that operations can store from 
previous cycles of an iteration, for example, when computing 
a series expansion.

The SAM complexity
The SAM is the most popular classifier. It represents spectra 
as a vector in N-dimensional space and computes the “angle” 
between vectors as the measure of similarity.11 The SAM maps 
the separation of two vectors in multidimensional space to an 
angle as in degrees such that 
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where f is the spectrum of a hyper-pixel, g is the reference or 
endmember spectrum and n is the index of the wavelength 
band.

The SAM has a MAC complexity of 3P[N] operations plus 
one square root, one division and one arccosine operation. The 
Taylor series expansion for a square root operation12 provides 
the baseline for estimating the number of MAC operations 
where:
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The selection of C provides the desired precision. The expo-
nential and factorial operations of each iteration can use 
extra memory to pre-compute and store intermediate results 
for future iterations. For instance, the exponent of the argu-
ment z requires P[C] operations. Multiplication with the pre-
computed constants of each iteration requires one additional 
MAC. Therefore, the MACC of the square root operation is 
2P[C].

The Maclaurin series expansion for the arccosine12 is
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Figure 3. Comparison of the separability of classifiers.
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In a manner that is similar to evaluating the square root 
operation, pre-computing the constants will reduce the itera-
tive computational requirements. The exponential operation 
requires P[2C + 1] and multiplication by the constant in each 
iteration will require one additional MAC. Hence, the MACC of 
the arccosine operation is 2P[2C + 1]. Subsequently, the total 
MAC complexity of the SAM classifier per image frame of P 
hyper-pixels is

	 PSAM = P × K × {P[3N] + P[8C] + P[44]}.	 (8)

Using the same approach, the complexity of the Bhattacharya 
distance (B-distance) is

	 PB-dist = P × K × {2P[N + 1] + 2P[C + 1] + P[172]}	 (9)

and the complexity of the MLC is:

	 PMLC = P × K × P[2N] + P[P(N + 1)] + 2P[C + 1].	 (10)

Wavelength sensitivity index complexity
Computing WSI requires P[2N] + P[1] plus the square root 
operation. The wavelength ratios are pre-computed. The AVN 
requires P[2] operations. The WSC operates on each of the P 
hyper-pixels only once to determine their {AVN, WSI} coordi-
nate. The WSC assigns each coordinate to the class having 
the minimum Euclidian distance. There are P × K Euclidian 
distance calculations that require 2P[C] + P[3] operations. 
Therefore, the one-time WSC computation per hyper-pixel and 
the assignment to a class requires P × {P[2N] + 2P[C] + P[3]} 
and P × K × {2P[C] + P[3]} operations, respectively. Therefore, 
the total MACC of the WSC classifier is

	 PWSC = P × K × {2P[C] + P[3]} + P × {P[2N] + 2P[C] + P[3]}.	 (11)

Assigning WSC features to a rectangular quadrant of 
the feature space would reduce the complexity further by 
requiring only P × K subtraction operations. This would yield a 
WSC-rectangular (WSC-R) classifier that has a complexity of

	 PWSC-R = P × 1 × {P[2N] + 2P[C] + P[3]}.	 (12)

Analytical results and 
discussions
This section will quantify the two key performance measures 
of endmember separability and the computational complexity.

Separability analysis
Table 1 summarises the normalised separation distances for 
materials in the denser cluster near the centre of the feature 
WSN space. This comparison excludes the outlier clusters 
such as hydrocarbons and snow to remove comparison bias. 
The selected combinations also simplify the table to a more 
meaningful set of materials for ease of visualisation and clarity. 
Hence, these endmember samples from the large spectral 
library will serve as the standard for comparing the separa-
bility of candidate and prevailing classifiers for a specific appli-
cation. The average separability for the selected materials 
is 23.7%. The average inter-class separability (emphasised 
in bold font) is 33.9% whereas the intra-class separability 
is 3.4%. Borrowing from the interpretation of chi-squared 
statistics goodness-of-fit testing that uses a 5% significance 
threshold, a candidate signature is not likely a member of the 
tested class if its separability is greater than 5%. Hence, these 
results indicate that the WSC will be effective in identifying 
specific contaminants such as oil spills or non-native mate-
rials that disrupts the homogeneity of a hyperspectral scene.

Case study of relative separability
The SAM requires that the compared spectra have the same 
bands and bandwidths. Of the available material combina-
tions in the endmember sample set, only six were comparable. 
It is possible to re-sample spectra to equalise their wave-
length bands but resampling introduces errors that distort the 
results of the feature extraction methods. Table 2 compares 
the separability of the SAM combinations available from the 
sample set.

The SAM separability advantage over the WSC is 8.2%. The 
average inter-class and intra-class improvements are 8.9% 
and 7.9%, respectively. The relatively small improvement of 
the SAM over the WSC indicates that the latter has the poten-
tial to approach the performance levels of prevalent classifiers 
for a small improvement in image quality that would reduce 
the interval of uncertainty.

Case study of computational complexity
The case studies will use parameters for an existing airborne 
remote sensing platform and a state-of-the-art processor 
to benchmark the computational requirements. At the time 
of this publication, the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) sensor is still the most popular 
platform for airborne hyperspectral image acquisition.13 It 
provides N = 224 spectral channels that range from 360 nm to 

  Soil (dark) Tree (con) Tree (dec) Concrete Ice

Soil (light) 6.4% 47.6% 45.2% 57.3% 71.6%

Grass (green)   0.9% 3.0% 14.1% 23.4%

Tree (conifer)    2.4% 16.1% 26.4%

Shingle (asphalt)       4.0% 16.8%

Pavement (concrete)        20.3%

Table 1. WSC separability matrix for typical ground cover.
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2500 nm. When the host aircraft is a Twin-Otter flying at an 
altitude of 4 km, the AVIRIS provides a spatial resolution of 
4 m. Hence, there will be P = 62,500 hyper-pixels per square-
kilometre of the scene. Although a typical application will 
tend to classify materials into dozens of classes, this case 
study will use the K = 15 material types shown for the WSC as 
prototype endmembers for a class. The highest exponent of 
the polynomial in the series expansion should be at least C = 3 
when computing the arccosine, logarithm and square root 
functions with at least one significant digit of accuracy.14 To 
summarise, the parameters for the case study are P = 62,500, 
N = 224, C = 3 and K = 15.

Table 3 lists the processing requirements per square-kilo-
metre of hyperspectral scenes collected with the AVIRIS Twin-
Otter system. For this scenario, the number of classifications 
per frame is P × K, which totals 937,500. The third and fourth 
columns list the number of MAC operations per classification 
(Ps / PK) and the total MACs per frame (Total Ps), respec-
tively. It is evident that the SAM requires 19 and 24 times more 
processing capacity than the WSC and the WSC-R, respectively.

The last column of Table 3 lists the execution time for each 
method when using a processor that can allocate 20 million 
multiply-accumulate cycles per second (MMACS) of capacity. 
The latest generation of mobile computers has approximately 
400 MMACS of total processing capacity.15 Hence, the WSC will 
consume 5% of that capacity whereas the SAM would require 
94% of it to classify scenes at the same rate. The WSC and the 
WSC-R processing speeds shown will support image acqui-
sition rates greater than 0.5 square-kilometres per second. 
The AVIRIS Twin-Otter can capture hyperspectral images at 
a maximum rate of approximately 0.4 square-kilometres per 
second.13 This result indicates that a hypothetical unmanned 

aircraft system (UAS) platform with a similar capture rate can 
classify hyperspectral scenes in real-time by using the WSC 
and WSC-R.

Summary and conclusions
The search for dynamic targets with remote sensing platforms 
demands a rapid detection ability so that the system can take 
action to enhance the spatial resolution of the target area for 
immediate verification. Small unmanned and autonomous 
vehicles are emerging, and so are tiny hyperspectral imagers 
that are suitable payloads. However, the missing capability is 
rapid hyperspectral image classification. The WSC is a low-
complexity method of hyperspectral image classification that 
would enable small autonomous vehicles to perform rapid 
searches.

The new technique extracts simple statistical and shape 
features of the spectra for comparison with target endmem-
bers. The features are the wavelength normalised average 
albedo (AVN) and the WSI. Together, these features establish 
the simple two-dimensional (2D) feature space of the WSC. 
We further define two new measures of performance. They 
are the separability of the feature space and the MACC of the 
classifier. The former is analogous to comparing their relative 
SNR requirements for a given level of classification accuracy 
desired.

The separability analysis demonstrates that the WSC 
provides approximately 24% separation among library 
endmembers that comprise a majority of typical ground cover 
materials. Prevailing algorithms such as the SAM provide a 
modest improvement in separability of 8.2% for those mate-

Class separability SAM WSC D
Soil (light)–Soil (dark) 17.2% 6.4% 10.7%

Grass (green)–Tree (deciduous) 8.0% 0.9% 7.1%

Tree (evergreen)–Tree (deciduous) 4.1% 2.4% 1.7%

Shingle (asphalt)–Concrete 16.2% 4.0% 12.2%

Shingle (asphalt)–Ice 25.8% 16.8% 9.0%

Concrete–Ice 29.1% 20.3% 8.8%

Average 16.7% 8.5% 8.2%

Table 2. Separability comparison of the SAM and the WSC.

Model Computational cost model Ps / PK Total Ps Time (s)

SAM P × K × {P[3N] + P[8C] + P[44]} 740 694M 34.7

B-distance P × K × {P[2(N + 1)] + P[2(C + 1)] + P[172]} 630 591M 29.5

MLC P × K × {P[2N]} + P[P(N + 1)] + P[2(C + 1)] 463 434M 21.7

WSC P × K × {P[2C] + P[3]} + P×{P[2N] + P[2C] + P[3]} 39 37M 1.9

WSC-R P × 1 × {P[2N] + P[2C] + P[3]} 30 29M 1.4

Table 3. Relative complexities of the classifiers.
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rials that form tighter clusters in the WSC feature space. The 
complexity benchmark revealed that the SAM requires at least 
19 times more processing capacity than the WSC to perform 
image classifications at the same rate.

The case study used optical specifications for a system that 
has capabilities that are similar to the AVIRIS aboard a Twin-
Otter aircraft. The results indicate that the WSC will require 
a processing capacity of 20 MMACS to classify hyperspectral 
images at a rate that exceeds the image capture capacity of 
the AVIRIS platform. This requirement represents only 5% of 
the processing capacity available from state-of-the-art mobile 
computing platforms, including smartphones. Mobile sensing 
platforms utilise most of the available computing capacity for 
navigational controls, communications and sensor opera-
tions. The SAM will require 94% of the available processing 
capacity to provide hyperspectral image classifications at 
the same rate of the WSC. Hence, the reduced complexity 
of the WSC will enable longer flight endurance by trading off 
excess computational capacity for lower power consumption. 
Hyperspectral data of the transportation infrastructure is not 
currently available in the public domain. Hence, the authors 
will use the results of this research to enable an extensive 
evaluation of the classification accuracy of the WSC relative 
to the SAM by acquiring field data with a recently purchased 
hyperspectral camera and UAS.
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