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The feasibility of rapid and non-destructive classification of five different tomato seed cultivars was investigated by using visible and 
short-wave near infrared (Vis-NIR) spectra combined with chemometric approaches. Vis-NIR spectra containing 19 different wave-
lengths ranging from 375 nm to 970 nm were extracted from multispectral images of tomato seeds. Principal component analysis (PCA) 
was used for data exploration, while partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant 
analysis (SVM-DA) were used to classify the five different tomato cultivars. The results showed very good classification accuracy for two 
independent test sets ranging from 94% to 100% for all tomato cultivars irrespective of chemometric methods. The overall classification 
error rates were 3.2% and 0.4% for the PLS-DA and SVM-DA calibration models, respectively. The results indicate that Vis-NIR spectra 
have the potential to be used for non-destructive discrimination of tomato seed cultivars with an opportunity to integrate them into plant 
genetic resource management, plant variety protection or registration programmes.
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Introduction
Tomato (Solanum lycopersicum L.) is one of most economically 
important horticultural crops worldwide. It is well known for its 
healthy nutrients, vitamin C and phytochemicals like lycopene 
and b-carotenes. Tomato is further associated with its preven-
tive role in prostate cancer risk development.1 Its importance in 
human consumption can also be estimated from the increased 
demand documented by FAOSTAT2 with a more than two-fold 
production increase (from 77.9 to 163.9 million metric tonnes) 
in the last two decades (1993–2013 AD). This is accompanied 
by intensive breeding efforts to develop new cultivars to meet 
global demand.3 As a result, several diverse tomato cultivars 
are released every year for commercial cultivation throughout 
the world. However, to release a new cultivar, compliance with 
DUS (distinctness, uniformity and stability) has to be ensured, 
which serves as a measure to protect the plant breeders’ 
rights.4 A descriptive characterisation of the plant cultivar is 

required for easy identification.4 All the member countries of 
the WTO have an obligation to TRIPS (trade-related aspects of 
intellectual property rights) to provide the minimum intellectual 
property rights (IPR) through a version of plant variety protec-
tion (PVP) or patents.4 Nepal has also drafted a bill on “Plant 
variety protection and Farmers’ Rights”, a sui generis of TRIPS 
which is under consideration in the parliament and has empha-
sised plant breeders’ rights.5

The most reliable method of cultivar identification is by their 
morphological features, as these are distinct and stable for 
years.6 However, morphological traits are very limited, and the 
narrow genetic diversity of modern tomato cultivars makes it 
more challenging to detect any new innovations like disease 
resistance, taste or other traits which have very few pheno-
typic variations.7 Molecular markers and other biochemical 
methods are usually used for the identification and characteri-
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sation of tomato germplasm.8,9 However, they are expensive, 
require experienced users and, more importantly, are destruc-
tive. Further, identification of cultivars by these methods 
require seeds to be planted, which is time consuming since 
germination and development of the plant for at least a month 
are necessary before it can be identified by morphological 
traits or any other method.10 So, there is a need for technolo-
gies which are robust, quick, non-destructive and reliable for 
the identification of different tomato cultivars.

Our previous study has shown that multispectral imaging 
could be one of the alternatives to identify the tomato culti-
vars non-destructively using seeds.5 We showed the applica-
tion of normalised canonical discriminant analysis (nCDA)11 
to classify tomato cultivars by using different seed features 
consisting of shape and seed colour attributes.5 However, use 
of nCDA analysis is limited to the instrument’s (VideometerLab, 
Videometer A/S, Hørsholm, Denmark) built-in software which 
was used to capture the seed image.5 Moreover, spectral 
information consisting of visible and short-wave near infrared 
(Vis-NIR) spectra can be extracted from the same seed 
image and analysed in different chemometric platforms. The 
Vis-NIR region contains information regarding colour attri-
butes (visible) and chemical properties (NIR) which can be 
interpreted with the help of different chemometric methods 
by their ability to discriminate samples belonging to one or 
several distinct groups based on spectral properties.12 Earlier 
work on Vis-NIR spectra has successfully demonstrated that 
they could be used for classification of tomato cultivars using 
the leaves6 and tomato fruits.13,14 They have also shown poten-
tial for identifying different cultivars of Chinese bayberry,15 
Chinese cabbage seeds16 and rice seeds.12 However, there is 
no report on the use of Vis-NIR spectra for cultivar identifica-
tion of tomato using seeds. Therefore, we aimed to investigate 
its potential for use in classification of tomato cultivars from 
seeds using two different chemometric methods, PLS-DA 
(partial least squares discriminant analysis)17,18 and SVM-DA 
(support vector machine discriminant analysis).19 PLS-DA is a 
linear classification method,17 whereas SVM-DA is well known 
for its non-linear classification properties.20,21 Hence, the 

study also aims to compare the outcome of these two chemo-
metric methods for classification of tomato seed cultivars.

Materials and methods
Tomato seed samples
Five tomato cultivars or accessions, viz. BL410, CL, Care Nepal, 
HRD17 and T9, collected from Nepal were grown in semi-field 
conditions in 2014 at Flakkebjerg, Denmark. Tomatoes were 
harvested at the red ripe stage and seeds were extracted by a 
natural fermentation process (pulp with seeds were collected 
and left overnight and later washed to extract seeds) for each 
cultivar. Extracted seeds were dried at room temperature for 
two days and subsequently fan dried for three days. The seeds 
were stored at 6°C until further use. A total of 1236 seeds were 
used for the study. The seed lots of all cultivars were subjected 
to a quartering sampling procedure to obtain a subsample 
which contained at least 200 seeds for each tomato cultivar 
(Table 1).

Spectral imaging and acquisition of Vis-NIR 
spectra
Spectral images (Figure 1) from each seed sample were 
captured using a VideometerLab instrument (Videometer A/S, 

Figure 1. The captured multispectral images of five tomato seeds cultivars. (a) The images after blue background segmentation; the 
white margin on the seeds shows the selection of the ROI (b) seed images at 525 nm (c).

Cultivars
Calibration 

set 
Test 
set 1

Test 
set 2

Total 
seeds

BL410 160   50 16   226
CL 120   96 14   230
Care Nepal 198   66 27   291
HRD17 170   91 22   283
T9 152   37 17   206
Total 800 340 96 1236

Table 1. Details of samples used for classification of tomato 
cultivars. Seed samples for test set one were randomly selected, 
whereas seed samples for test set two were selected by automatic 
data split using the Onion algorithm of PLS Toolbox ver. 7.9.
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Hørsholm, Denmark). This instrument acquires multispectral 
images in 19 Vis-NIR wavelengths: 375, 405, 435, 450, 470, 505, 
525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 940 and 
970 nm. The wavelengths from 375 nm to 700 nm are from the 
visible range, and the wavelengths from 780 nm to 970 nm are 
in the NIR region. The instrument consists of a five-megapixel 
CCD camera, mounted inside the top of the integrating sphere, 
coated with matte titanium paint, with illumination from 19 
light emitting diodes (LEDs) placed along the rim of the sphere. 
The instrument was calibrated to absolute reflectance using a 
bright and dark reference object (NIST traceable targets) and 
geometrically aligned using the dotted plate before capturing 
the seed images.22 The seeds were placed at the bottom of the 
integrating sphere on a “blue circular disc” and a high resolu-
tion multispectral image of 2056 × 2056 pixels was captured.

The captured image contains the information from the 
seeds, which are the region of interest (ROI) (Figure 1b), and 
the background (on which the seeds were placed to capture 
the image, in this case a “blue circular disc”) is noise and irrel-
evant to the analysis. So, a default “blue background mask” of 
the VideometerLab software was applied to only obtain images 
of the seeds. Mean reflectance spectra were calculated from 
each image by averaging the intensity of pixels within the ROIs 
at each wavelength. The resulting data consisted of 19 mean 
values of the reflectance from the seed which were later used 
for the classification of tomato cultivars.

Spectral pre-processing and sample set 
partition
The Vis-NIR spectra were preprocessed using SNV23 and 
detrended23 before mean centring. Principal component anal-
ysis (PCA)24 was used on preprocessed Vis-NIR spectra to 
examine the grouping of the tomato cultivars and possible 
outlier detection. The whole Vis-NIR data set was divided into 
three sets consisting of one calibration set and two test sets. 
The first test set consisted of 340 seeds, which were randomly 
selected from the data. The second test set consisted of 96 
seeds and was obtained using the automatic data split Onion 
algorithm of PLS Toolbox version 7.9, and the remaining 800 
seeds were used to develop a calibration model. The details of 
the sample set partition are shown in Table 1.

Partial least squares discriminant analysis 
(PLS-DA)
Partial least squares discriminant analysis, a linear classifica-
tion method,18 is a derivative of the standard PLS regression 
algorithm17 which uses class variables instead of numeric 
variables. PLS1 and PLS2 algorithms are commonly used 
based on the number of classes; for two-class problems, the 
former is used, while the latter is used when there are more 
than two classes of samples. In PLS, the dummy variable Y 
is used as a response variable, and it is set to 1 if the sample 
is one of either class and 0 if not. For instance, in our work 
comprising five classes, each sample is coded as one of the 
following five vectors: [1 0 0 0 0], [0 1 0 0 0], [0 0 1 0 0], [0 0 0 1 0], 
[0 0 0 0 1] designating the classes 1, 2, 3, 4 and 5, respectively. 

The model seldom predicts either 1 or 0 perfectly, so a cut-off 
value was set at 0.5, above which the sample is predicted as 1 
and below which it is predicted as 0. In this study, the optimal 
number of latent variables (LVs) was chosen on the basis of 
minimal classification error for calibration and cross-valida-
tion of the model. The model was cross-validated by Venetian 
blinds of 10 data splits with 10 samples in each split. Further 
information on PLS-DA can be found in the work of Barker and 
Rayens25 and Ballabio and Consonni.18

Support vector machine discriminant 
analysis (SVM-DA)
Support vector machine (SVM) is a robust machine learning 
algorithm developed by Cortes and Vapnik,19 and it is based on 
a structural risk minimisation (SRM) strategy which reduces 
the risk of overfitting the data.26 SVM constructs a hyperplane 
as a decision line, which separates the classes with the largest 
distance from the nearest training data points. The samples 
used for defining the boundary of classes are termed as 
support vectors (SVs) and are the only ones used for the model 
development. SVM maps the dataset of “n” observation and 

“k” variables (in this case Vis-NIR) into a higher dimensional 
feature space by use of a kernel function. Radial basis function 
(RBF), a kernel function which is used for non-linear problems, 
was used in the study to reduce computational complexity of 
the training procedure and to obtain good prediction results. 
Two parameters, g (RBF kernel width) and c (SVM cost factor) 
of RBF are needed to be tuned a priori. The former is used as a 
regulation constant affecting the generalisation performance 
of SVM models and the latter is the cost factor which controls 
the trade-off between training errors and model complexity 
of SVM models. The search limits of g and c were set to the 
default LIBSVM algorithm of PLS Toolbox version 7.9, which 
were 10–6 to 10 with 15 values spaced uniformly and from 10–3 
to 100 with 11 values spaced uniformly, respectively. These two 
parameters were decided based on the minimal classification 
error through a two-dimensional grid search coupled with 
cross-validation by Venetian blinds of 10 data splits with 10 
samples in each split.

The above mentioned chemometric methods, viz. PCA, 
PLS-DA and SVM-DA, were performed using MATLAB version 
8.1.0.604 (R2013a) (The Math Works, Inc., Natick, MA, USA) 
along with the PLS Toolbox 7.9 (Eigenvector Research, Inc., 
WA, USA).

Model evaluation measures
To evaluate the performance of the classification models, the 
classification error rate (ER) for each cultivar, overall classifi-
cation ER (OER), sensitivity (Sn), specificity (Sp) and accuracy 
were calculated as per Ballabio and Consonni.18 The equa-
tions used for the calculations are as given below:

Sensitivity (Sn),		
TPSn

TP FN
=

+
 

 
		  (1)

where TP is true positive samples, FN is false negative samples.
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where TN is the true negative and FP is false positive.
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where n is the number of classes (cultivars in our study) and 
ER is classification error rate.

Classification accuracy,	
  100%

 
Correctly classified samplesAccuracy

Totalsamples
= ´

	 (5)

Results and discussion
Exploratory analysis
Vis-NIR spectral data from seeds of the five tomato cultivars 
showed variations, but exhibited similar trends of reflectance 
in each wavelength (Figure 2). The variations in the spectra 
indicate the differences among tomato cultivars with regard 
to physical and chemical properties of tomato seeds. The vari-
ations in the visible range can be attributed to colour of the 
seed samples, whereas the variations in the NIR region are 
due to chemical differences in seeds of the cultivars.12,22 These 

spectral variations indicated that Vis-NIR can be exploited for 
qualitative classification using chemometric methods.

PCA was initially performed on the Vis-NIR spectra without 
any data pre-treatment to explore the possible clustering of 
the tomato cultivars and to identify possible outliers. However, 
distinct discriminations among the tomato cultivars were not 
observed (data not shown). This is not a surprising observa-
tion as the spectral properties of the seeds might have influ-
ence on the physical phenomena like light scattering, particle 
size distribution and alignment with the incident beam of 
light which add noise to the data.27 Therefore, mathematical 
data pre-processing algorithms SNV and detrend were used 
to eliminate or minimise the physical effects for further data 
analysis.23 The PCA performed on the preprocessed Vis-NIR 
spectra revealed few outliers (data not shown) in the cali-
bration set. However, removing the outliers did not improve 
the model and they were subsequently retained for further 
development of the classification models. Figure 3 shows 
the three-dimensional principal component (PC) score plot 
using the first three score vectors, PC 1, PC 2 and PC 3, 
which contributed most of the spectral variations of 96.5%, 
i.e. 47.8%, 42.6% and 6.1%, respectively. It showed the clus-
tering of seed samples of the same cultivars, though some 
overlaps between the clusters of cultivars were observed. 
The results indicate that discrimination between the five 
tomato cultivars is possible based on reflectance from seeds. 
Further, it signifies that different spectral attributes from 
samples can be associated with characteristics of the seed 
from each cultivar.

PLS-DA model
The PLS-DA model was developed using six LVs to classify 
the tomato cultivars. The developed PLS-DA model explained 
99.7% of the variation of the Vis-NIR spectra, out of which 

Figure 2. The mean Vis-NIR spectrum of the five tomato cultivars extracted from the ROI of the seed images in 19 wavelengths. The 
wavelengths from 375 nm to 700 nm are from the visible range and wavelengths from 780 nm to 970 nm are from the NIR region (a) 
averaged SNV and detrend pre-processed Vis-NIR spectra of tomato seeds (b).
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96.4% variation information came from the first three LVs. The 
model was able to classify all the cultivars of the calibration 

set with an overall classification ER of 3.2%, with the least ER 
for HRD17 and CL of 0.3% and 0.8%, respectively (Table 2). The 
calibration model was relatively poor in classifying cultivars 
BL410, Care Nepal and T9 as the misclassification rate was 
higher for each and contributed significantly to the overall ER 
(Table 2). This could be plausible as the clusters of these three 
cultivars were found to overlap in the exploratory analysis 
(Figure 3). However, the model was able to predict test sets of 
samples with a classification accuracy of 94% to 100% for both 
test sets (Table 3). The proportion of misclassified seeds was 
almost similar in the two test sets (Table 3). Figure 4 shows 
the classification accuracy of the PLS-DA model for test set 
one. Overall ERs were also consistent for test set one and test 
set two with 1.8% and 2.1%, respectively (Table 2). Further, 
the sensitivity of the model, i.e. the ability to correctly iden-
tify the positive samples belonging to the class, was reason-
ably higher for all cultivars with absolute classification for CL 
and HRD17 (Table 4). The specificity of the model, i.e. ability 
to reject samples of all other cultivars, was also adequately 
higher and very comparable to its ability to correctly clas-
sify samples, which signifies the robustness of the model. In 
general, PLS-DA showed the potential of Vis-NIR spectral 
data for classifying seeds of tomato cultivars.

Figure 3. First three principal component (PC) scores plot 
shows the clustering of five tomato cultivars towards their 
group membership. The values in the parentheses indicate the 
information for variation contained in the respective PCs.

Chemometric 
method Data set BL410 CL

Care 
Nepal HRD17 T9

Overall 
ER

PLS-DA

Calibration set 7.3% 0.8% 4.6% 0.3% 2.8% 3.2%
Cross-validation 7.7% 0.8% 4.5% 0.6% 3.0% 3.3%
Test set one 1.8% 0.6% 2.1% 0.0% 4.8% 1.8%
Test set two 3.7% 1.5% 2.4% 1.1% 2.2% 2.1%

SVM-DA

Calibration set 0.3% 0.4% 0.6% 0.1% 0.5% 0.4%
Cross-validation 1.5% 1.8% 1.5% 1.1% 1.5% 1.5%
Test set one 1.1% 1.7% 0.2% 0.6% 2.7% 1.2%
Test set two 0.6% 0.0% 2.5% 0.0% 2.9% 1.2%

Table 2. Classification error rate for each tomato cultivar and overall classification error rate for different data sets of two chemometric 
methods.

Data set Cultivars

Misclassified seeds Accuracy (%)

Total seedsPLS-DA SVM-DA PLS-DA SVM-DA

Test set one

BL410 2 1   96   98 50

CL 2 3   98   97 96

Care Nepal 1 0   98 100 66

HRD17 2 0   98 100 91

T9 2 2   95   95 37

Test set two

BL410 1 0   94 100 16

CL 0 0 100 100 14

Care Nepal 1 1   96   96 27

HRD17 0 0 100 100 22

T9 1 1   94   94 17

Table 3. The number of misclassified seeds and classification accuracy results for the two independent test sets predicted by PLS-DA and 
SVM-DA.
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SVM-DA
The SVM-DA model was developed without any data compres-
sion. SVM parameters, i.e. g and c optimisation based on 
the minimum misclassification error through a grid search 
method, were specified by the position of “X” in Figure 5, where 
the values for the parameters were 31.62 and 10, respectively. 
The value of c determines the trade-off between the complexity 
of the boundary indicating the importance given to misclassi-
fied samples or samples near the boundary.21 Usually, a lower 
value of c is preferred as a degree of misclassification is toler-
ated, i.e. it permits some samples to be ignored or placed 
on other side of the classifier’s margin and balances the 
classification error against the complexity of the model.19,21 
The model contained 126 support vectors (SVs), which were 
used to define the decision plane for classification of the five 
tomato seed cultivars. This is a considerable number of SVs 
to be included in the development of a classification model 
with an average of around 16% of the total samples. These 
support vectors contributed in defining the class boundaries 
for prediction of seeds in the test sets.

The overall classification ER of the SVM-DA model was very 
low, 0.4% for calibration, and comparatively stable in predic-
tion of the two test sets with an overall classification ER of 
1.2% and 1.2%, respectively (Table 2). The SVM-DA model 
predicted the cultivars with a very low number of misclassified 

seeds for all cultivars (Table 3), which can be also be observed 
in Figure 6 which shows the prediction results of test set one. 
The classification accuracy of the two test sets was also very 
high for all the tomato cultivars with the lowest being 94% 
for T9 (Table 3). The capacity of the model to identify the posi-
tive samples was very similar to its ability to reject the other 
cultivar samples (Table 4). The values for sensitivity and speci-
ficity were more or less equal to one for all cultivars, indicating 
the strength of the model18 (Table 4). The promising result 
from the SVM-DA analysis shows the potential of Vis-NIR 
spectral data for discriminating seeds of tomato cultivars.

The study demonstrates the potential of Vis-NIR spectra for 
discrimination of tomato seed cultivars without any sample 
pre-treatment. Both of the chemometric methods showed 
good classification accuracy with a low classification error rate. 
The efficiency of the models to accept the positive samples 
(sensitivity) and reject the negative samples (specificity) for 
each tomato cultivars were very high and comparable between 
the two methods (Table 2). Choice of selecting either of the 
two methods would therefore merely depend on individual 
preference. SVMs are often considered robust classification 
methods and usually produce better results even if the data 
are noisy.20 However, they are non-linear and might be complex 
if the user does not have prior knowledge of the choice of 
kernels and parameter optimisations.21,26,28 On the other hand, 

Figure 4. Prediction results of test set one for five tomato seed cultivars by PLS-DA.



S. Shrestha, L.C. Deleuran and R. Gislum, J. Spectral Imaging 5, a1 (2016)	 7

PLS-DA is a simple linear classification method, and it is easy 
to understand and interpret the results.18,28,29 The results from 
these two chemometric approaches are consistent with the 
outcomes on the prediction of cultivars from Vis-NIR datasets 
of rice seeds,12 cabbage seeds,16 tomato fruits14 and leaves6 
etc. with accuracies ranging from 94% to 100%. The choice 

of the chemometric methods could also be extended to other 
linear classification methods like soft independent modelling 
of class analogy (SIMCA) and discriminant analysis (DA), as 
they also demonstrated higher classification accuracies of 
94% and 97% in identifying cultivars of cabbage seeds16 and 
tomato fruits,14 respectively. Artificial neural network (ANN), 
a non-linear chemometric method,12 has also been used in 
classifying rice seeds12 and Chinese bayberry15 with >96% and 
95% prediction accuracies, respectively. All these methods 
give us good alternatives to choose from, however, priority 
should be given to the methods which are simple, easy to 
understand and interpret results.18,29

The results obtained from Vis-NIR are promising and compa-
rable to the previous study which included seed colour attributes 
like intensity, hue, saturation, CIELab L*, CIELab a*, CIELab 
b*, nCDA-based trimmed mean pixel value and seed shape 
features.5 Nevertheless, the purpose of the current study was 
not to compare results with the previously used method nCDA,5 
rather more to highlight the features of the instrument which 
can be used in other chemometric platforms for better clas-
sification. Inclusion of Vis-NIR and morphological attributes of 
seeds has been reported to increase the classification accuracy 
to a certain extent.12 However, morphological traits from tomato 
seeds have been found to be inconclusive in discrimination of 
tomato cultivars.5 The results from the Vis-NIR spectra are 
robust enough for classification of tomato seed cultivars, and 
the inclusion of the morphological traits may only add more 
noise to the model. Furthermore, the results are from only one 

Data set Cultivars
PLS-DA SVM-DA

Sensitivity Specificity Sensitivity Specificity

Calibration

BL410 0.93 0.93 0.99 1.00
CL 1.00 0.98 0.99 1.00
Care Nepal 0.95 0.96 0.99 1.00
HRD17 1.00 0.99 1.00 1.00
T9 0.97 0.97 0.99 1.00

Cross-validation

BL410 0.93 0.92 0.97 1.00
CL 1.00 0.98 0.97 1.00
Care Nepal 0.95 0.96 0.98 1.00
HRD17 0.99 0.99 0.99 0.99
T9 0.97 0.97 0.98 0.99

Test set one

BL410 1.00 0.96 0.98 1.00
CL 1.00 0.99 0.97 1.00
Care Nepal 1.00 0.96 1.00 1.00
HRD17 1.00 1.00 1.00 0.99
T9 0.94 0.96 0.95 1.00

Test set two

BL410 0.96 0.97 1.00 0.99
CL 0.99 0.98 1.00 1.00
Care Nepal 0.97 0.98 0.96 0.99
HRD17 0.99 0.99 1.00 1.00
T9 0.97 0.98 0.94 1.00

Table 4. The sensitivity and specificity results obtained from two chemometric methods for five different tomato cultivars. Sensitivity is the 
ability of the model to correctly identify samples of the cultivar, whereas the specificity is the capacity to reject the samples of other culti-
vars. The values range from 0 to 1; high values indicate better classification results.

Figure 5. The contour plot of the optimisation parameters g 
and c for discrimination of five tomato cultivars, and the posi-
tion of “X” indicate the optimal result. The position “X” is a 
logarithmic value of 31.62 and 10 for g and c, respectively.
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growth condition and further validation would be required to 
test the robustness of the technology and the methods using 
the samples from seed lots containing variation in growing 
conditions and seed age. Growing conditions and seed age have 
been associated with differences in the physical and chemical 
properties of the seeds,30–33 which in turn has an effect on the 
spectral properties of the seed.34 Moreover, Vis-NIR spectra 
have also shown their ability to discriminate or identify tomato 
cultivars based on their reflectance from leaves6 and tomato 
fruits.12,14–16 Further, Vis-NIR spectra have been successfully 
used to segregate transgenic and non-transgenic tomato geno-
types using reflectance from tomato fruits13 and also for rice 
seed genotypes.12 These studies suggest an alternative option 
to the use of highly sophisticated molecular markers for cultivar 
identification or for discrimination, which are often expensive 
and time-consuming. Therefore, the significance of these 
studies advocates for at least integration of the technology for 
initial assessment of the materials, which will provide wider 
flexibility of the use of the plant materials without any sample 
preparation from leaves,6 fruits13,14 or seeds for discrimination 
of tomato cultivars.

Conclusion
This study presents the novelty of using Vis-NIR spectra 
for classification of different tomato cultivars using seeds 
together with chemometric approaches. PLS-DA and SVM-DA 
were both equally good for prediction of the unknown samples 
with the highest classification accuracy. The seed samples 
used in the study were from the same harvest year with similar 
growing conditions (climate and cultivation practices). So, 
further research is needed to test the performance of the 
Vis-NIR spectra for seeds of different tomato cultivars having 
variations in harvest year and growing conditions.
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