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Introduction
In recent years, chemical imaging techniques have emerged 
as effective methods for surface analysis which not only 
circumvent some shortcomings of conventional spectroscopic 
techniques, but also afford more comprehensive characteri-
sation of the measured surface. These imaging techniques 
are especially useful in this context because of their ability 
to extract vast spectral and spatial information (thousands 
of spectra) from a single sample in a short time. The robust 
and reliable combination of chemical (molecular spectros-
copy) and physical (digital imaging) techniques have aroused 
an increasing interest in a number of scientific areas such 

as medical science, food science, and pharmaceutical and 
cultural heritage research.1–6

The use of near infrared chemical imaging (NIR-CI) as a 
working methodology in pharmaceutical analysis is on the rise, 
with applications including tablet uniformity assessment,7 
coating characterisation and particle/domain size 
determination,8 spectral matching,9,10 and the homogeneity of 
pharmaceutical powder blends characterisation.11–14 All these 
features make NIR-CI techniques a useful tool for reducing 
the time and resources required for manufacturing while still 
improving quality control.
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Such expansion has resulted mainly from the above-
mentioned ability of NIR-CI to measure whole surfaces of 
samples, which is not the case with conventional NIR 
spectroscopy. NIR-CI information consists of a three-
dimensional data cube where two dimensions are spatial 
directions (pixels) and a third dimension contains spectral 
information for each pixel (spectra). The body of NIR-CI data 
constitutes a hyperspectral cube consisting of thousands of 
spectra from which useful information can be extracted by 
using an appropriate mathematical tool.

One of the most critical steps in any pharmaceutical tableting 
process is the blending of the pure constituents to obtain 
a homogeneous final blend. Ensuring correct blending in 
terms component distribution and the absence of segregation 
(i.e. substantial differences in size between particles) is 
essential to comply with the strict regulations required of the 
pharmaceutical industry. The use of NIR-CI in combination 
with suitable data analysis methods has proved useful for 
this purpose. However, assessing powder blending uniformity 
requires using a fast, reliable methodology in order to obtain 
a picture of the distribution of the active pharmaceutical 
ingredient (API) and its excipients at any time during the 
production process, as well as quantifying the pharmaceutical 
components on the measured surface of the final blend.

Multivariate analysis has been used in combination with 
NIR-CI to overcome the serious overlap problems of NIR 
radiation ever since the latter technique emerged. Thus, 
principal component analysis (PCA) and cluster analysis 
have been used to obtain a preliminary view of the target 
surface or to segment previously obtained images into their 
constituent parts.7 Also, multivariate calibration models 
based on partial least squares (PLS) and classical least 
squares (CLS) methodologies15,16 and resolution models 
based on multivariate curve resolution (MCR)17 have been 
used to quantify components in various pharmaceutical 
preparations.

In this study, the usefulness of correlation coefficients 
between the spectrum for a pure analyte and its NIR 
chemical image have been tested for rapidly determining 
the distribution of major pharmaceutical components to be 
blended into binary mixtures; this was assessed by using 
laboratory-made binary mixtures of acetylsalicylic acid 
(ASA) and sucrose (SUC). Using the proposed methodology 
facilitated construction of calibration models to quantify the 
ASA and SUC contents in the measured surface at any time 
during the blending operation.

Correlation coefficients provide numerical information about 
the similarity between spectra at each pixel. Also, correlation 
maps provide visual information about the distribution of each 
analyte in a sample; therefore, increasing the proportion of a 
given analyte in the sample raises its correlation coefficient 
for the analyte at each pixel. Correlation coefficients have so 
far been successfully used to determine analytes from NIR 
hyperspectral images18 and, in combination with conventional 
NIR spectroscopy, to determine the API content in different 
samples from the same production process.19

Using correlation coefficients allows the development 
of simple calibration models; this is especially so with 
pharmaceutical samples where the pure spectrum for each 
analyte is available. As noted earlier, the pharmaceutical 
industry has a growing need for simple methods for component 
distribution analysis. With binary samples, meeting such a 
need entails the use of an intuitive parameter (e.g. a correlation 
coefficient) to obtain quantitative information in a fast, simple 
manner. In this study, we compared the effectiveness of 
using correlation coefficients in combination with univariate 
methodology to multivariate methodologies including CLS, 
PLS and MCR.

This paper demonstrates the advantages of using 
correlation coefficients in combination with NIR-CI over 
multivariate methodologies described in the literature7–9,11–14 
for the assessment of component distribution uniformity 
in pharmaceutical binary preparations. In fact, correlation 
coefficients provide a simpler, faster methodology for the 
qualitative and quantitative analysis of major components 
in pharmaceutical samples. In addition, a discussion of the 
potential problems with samples that have more than two 
components is also included.

Experimental
Reagents and instruments
Binary samples preparation
A total of 15 binary samples containing approximately 10 g of 
ASA and SUC, and spanning the ASA content range 25–75% 
(w/w) (Table 1) were prepared. SUC was used in the form 
of granular powder of ca. 20 μm particle size and ASA was 
presented as needle-shaped particles 100–250 μm long. Both 
compounds were used as received and mixed in a Turbula 
mechanical shaker (Willy A. Bachofen, Basel, Switzerland) 
for 20 min, which was deemed long enough to ensure uniform 
distribution. Ten samples, from the above 15 samples span-
ning the concentration range were manually milled in a mortar 
into a fine powder and used to obtain the calibration line by the 
regression of the CC vs the concentration of the ASA in each 
sample. The other five samples were used to predict the ASA 
concentrations by using previously constructed regression 
curves.

Instruments
All spectra were obtained on a Think Spectrally Roda-25 
focal plane imaging NIR spectrophotometer (Think Spectrally, 
Valencia, Spain) equipped with a mercury cadmium telluride 
(MCT) detector of 320 × 256 pixels spanning the wavelength 
range of 1200–2400 nm with a spectral resolution of 7 nm. The 
total image-acquisition time was 120 s.

Under the selected operating conditions, a spatial 
resolution of 100 × 100 μm per pixel image was collected from 
each sample; therefore, the overall image spanned an area 
of 32.0 × 25.6 mm. Samples were irradiated with four halogen 
lamps placed at 45° angles around them.
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Software
Images were acquired by using the software bundled with the 
TS hyperspectral camera (Think Spectrally, Valencia, Spain) 
calibrated via a graphical user interface (GUI) for MatLab, 
TS_Gui, also supplied with the camera.

Spectral treatments and CLS were applied and correlation 
coefficient maps were constructed by using customised 
functions developed in MATLAB (The MathWorks, Natick, 
MA, USA). These routines can be freely downloaded from the 
web.20 MCR-ALS analysis was performed by using software 
described elsewhere.21 PLS models where constructed with 
PLS-Toolbox (Eigenvector Research, Wenatchee, WA, USA).

Recording of images
The recording of images was preceded by calibration of the 
instrument with six AP-0200 NIR standards of 99%, 80%, 40%, 
20%, 10% and 0.2% reflectance from Foss (Silver Springs, 
MD, USA). These standards were used to construct a calibra-
tion model used to define the absorbance scale; the software 
TS_Gui makes a quadratic adjustment from Digital Numbers 
(DN) to absorbance values, fixing the 100% and 0% reflectance 
values.

The images were obtained with a 7 nm resolution over the 
wavelength range of 1200–2000 nm. 

The images of the samples were obtained by placing 3 g 
of each powder sample in a cylindrical glass cell about 
3.8 cm of diameter and pressing their surfaces with a 
metal disc to obtain a flat surface in order to acquire the 
NIR spectrum.

The final information area used was 150 × 150 pixels, 
equivalent to a useful surface of 15 × 15 mm. The pure 
component images were also measured in a similar manner.

Pre-treatment of hyperspectral images
The three-dimensional nature of the data cube obtained (Figure 
1) required unfolding for adaptation to the two-dimensional 
matrix typically used by the most common data processing 

algorithms.7 The resulting 2D matrix was subjected to various 
spectral pre-treatments for testing and evaluation using an 
appropriate spectral treatment and wavelength that maxim-
ised differences between spectra according to ASA and SUC 
composition, thereby providing a wide range of correlation 
coefficients in terms of component concentrations. Also, it 
resulted in improved predictions when using univariate cali-
bration models to obtain concentration maps.

Data analysis
Assessment of component distribution via 
correlation coefficients
Correlation maps
The correlation coefficient measures the similarity between 
two spectra and is defined as the ratio between the covariance 
of spectra and the standard deviation for each spectrum. So 
correlations can be calculated to each pixel. Mathematically, 
the correlation coefficient between the spectrum for each 
pixel and for each pure component (ASA or SUC) is calculated 
as Pearson’s correlation coefficient:18
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where axy and b represent the spectrum obtained for each x–y 
pixel and the pure spectrum respectively as measured at l 
wavelengths and saxy

 and sb denote the standard deviation of 
axy and b, respectively.

Calculating the correlation coefficient (CC) for each pixel of 
the image, correlation map R(x × y) for each component can be 
obtained in order to identify the predominance areas for each 
analyte (Figure 2) and the plot of the CC histograms for each 
analyte allows us to examine the distribution of the correlation 
coefficients for both analytes in each sample.

Non-milled samples Milled samples
Sample ASA concentration (%) SD (%) RSD (%) SD (%) RSD (%)

N01 24.8 0.056 12.07 0.024 4.43
N02 30.1 0.028 5.02 0.028 4.63
N03 34.7 0.035 6.09 0.027 4.51
N04 40.3 0.039 6.77 0.024 3.71
N05 45.3 0.023 3.38 0.026 3.71
N06 49.9 0.037 5.16 0.029 3.85
N07 57.7 0.019 2.58 0.017 2.12
N08 65.5 0.027 3.31 0.014 1.64
N09 70.2 0.022 2.60 0.010 1.13
N10 75.2 0.014 1.50 0.009 0.96

Table 1. Standard deviation (SD) and relative standard deviation (RSD) of correlation coefficient of samples spectra respect to acetyl salicylic 
acid between pixels.
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The correlation maps obtained were used to calculate 
the corresponding mean values (X

_
), the standard deviation 

(SD) and the relative standard deviations (RSD) in order 
to derive useful information regarding the distribution of 
each component at the sample surface. A high RSD for a 
component was indicative of poor uniform distribution in the 
corresponding sample.

Quantitative analysis
Calibration models were constructed by univariate regression 
between the mean CC value obtained from the correlation 
maps for each component and their nominal concentration 
as described elsewhere.19,22 Jovanovic et al. illustrated the 
quadratic fit between concentration and coefficient correlation 
in the whole range (from 0% to 100%). Nevertheless, a linear 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 

 

Figure 1. Procedure used to calculate the correlation coefficient maps for components.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 

Figure 2. Correlation map for ASA and histograms for sample N01 homogenised conventionally (a) and milled (b).
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performance is observed when using short concentration 
intervals.

For this reason, both linear and quadratic models were 
developed in order to find the calibration with best prediction 
performance.

The models were applied pixel wise to prediction samples in 
order to construct a concentration map for each component 
in all samples and the map was used to obtain an average 
concentration value for each analyte.

Comparison with calibration and resolution 
methodologies
The quantitative results obtained were compared with those 
provided by other calibration models in order to assess 
the usefulness of correlation coefficients for quantification 
purposes. Therefore, quantitation methods, including PLS 
and CLS,15 and multivariate curve resolution–alternating 
least squares (MCR-ALS),6,17,22 were also used to compare the 
performance of these different algorithms.

The predictive ability of their models were assessed in terms 
of precision and accuracy via the root mean square error of 
prediction (RMSEP) and standard error of prediction (SEP) 
(Equations 2 and 3) with provision for bias (average value of 
residuals) in each model (Equation 4):
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In these expressions, ci is the reference concentration, ĉi 
the calculated concentration and n the number of samples 
studied.

Results and discussion
Correlation maps
The distribution of components in 10 binary samples containing 
variable proportions of ASA from 25% to 75% w/w and SUC 
was studied. The two components were mixed in a conven-
tional solid shaker for 20 min, which was assumed to be long 
enough for adequate homogenisation. Different spectral 
ranges and various spectral treatments were used to identify 
the most informative correlation map for every analyte in each 
sample. This maximised the differences in correlation coef-
ficients between samples, and also those between pixels in 
each sample, thereby increasing the sensitivity of the ensuing 
calibration model (Table 2). Using the wavelength range of 
1200–2000 nm in combination with SNV and smoothing with 
a seven-point moving window provided the widest possible 
range of correlation coefficients.

For example, Figure 2(a) shows the correlation map for ASA 
in sample N01. As can be seen, the surface image exposed a 
clearly different distribution of the areas highly correlated with 
ASA (in red) and additionally where correlation was lower than 
expected (in green). Furthermore, the associated histogram 
exhibited duplicated variability in the correlation coefficients. 
These two results are complementary inasmuch as a 
correlation map shows the surface distribution of correlation 
coefficients, whereas a histogram is more closely associated 
with the values themselves.

Blending processes depend not only on mixing time but also 
on the physical properties of the compounds that allow or do 
not allow a better and faster mixing when morphology and 
particle size is quite similar. In our study, a visual inspection 
with a stereoscopic magnifying glass shows a very high 
aggregation of ASA particles and a reduced mixture with 

ASA calibration curve
Ten milled samples in range 25–75%

Model Linear Quadratic
Quadratic term — 1.8
Slope 127.2 124.6
Offset –44.1 –43.1
R2 0.994 0.994
SUC calibration curves

Ten milled samples in range 25–75% Six milled samples in range 45–75%
Model Linear Quadratic Linear Quadratic

Quadratic term — 74.8 — 36.1

Slope 103.7 2.3 90.6 47

Offset –22.4 9.9 –15.1 –2.5
R2 0.989 0.998 0.998 0.999

Table 2. Calibration curves for ASA and SUC by using correlation coefficients.
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sucrose particles. The needle form of ASA particles greatly 
limited the mixture with the rounded sucrose when mixed with 
a mechanical shaker, and only after an intense manual milling, 
which produces a significant reduction in the size of them, can 
a homogeneous distribution of the components be achieved. 
Only thorough milling of the two joint mixture components 
ensured homogeneous blending.

In conclusion, conventional homogenisation of the mixture 
failed to ensure homogeneity in the resulting sample as well 
as shaking for a prolonged time. Cohesive forces between the 
particles dictate their fluency and the ease with which they 
can be mixed homogeneously as a result. Only thorough joint 
milling of the two mixture components ensured homogeneous 
blending.

As can be seen from Figure 2(b), the studied zone exhibited 
a very soft gradation suggestive of improved distribution of 
the sample components. The associated histogram exhibited 
a homogeneous (Gaussian) distribution around a correlation 
coefficient value suggestive of the absence of clustering in the 
coefficients

Table 1 gives the SD and RSD of the correlation coefficient 
maps for the 10 samples in the calibration set. SD and RSD 
decreased with increasing API (ASA) content; the small 
differences in correlation coefficients between pixels are 
suggestive of increased homogeneity in the mixture.

The Cochran test, a test which allows K variances to be 
compared, between normal distributions but limited to cases 
where all classes are of equal size, especially useful for 
detecting whether one variance is much larger than the other. 
A Cochran test applied to samples exposed differences in SD 
between milled and unmilled samples. This result can be 
ascribed to the ease of homogenisation increasing with API 
content due to the effect of increasing cohesion forces between 
ASA particles hindering their movement and homogenisation 
of the mixture.23,24 Based on this information, simply milling 
the samples to a very small particle size (<25 μm) can be 
expected to facilitate mutual mixing of the two components.

Quantitative analysis
Ten finely powdered binary samples containing 25%–75% ASA 
were used to construct calibration curves for ASA and SUC by 
univariate regression of the average correlation coefficients 
for each sample and their respective nominal concentrations 
(Table 3). Both linear and quadratic models were tested and 
found to provide similar results for ASA. Therefore, the linear 
model was adopted in order to facilitate interpretation of the 
models. On the other hand, the quadratic model for SUC 

performed better than its linear counterpart. For simplicity, 
however, the linear model was chosen for SUC as well. This 
model was applied over a restricted SUC content range (45%–
75%), which provided acceptable values for quality-related 
parameters.

Five new mixtures of ASA and SUC containing 50%–70% 
API were prepared and used to assess the predictive ability 
of the calibration models. Preliminary tests revealed that 
the distribution of both components in these samples was 
similar to that in the calibration samples and that their degree 
of homogeneity was acceptable. A concentration map was 
constructed by plotting the concentration value obtained in 
order to show the concentration distribution for both analytes 
at the sample surface.

Table 4 gives the average ASA concentration obtained for 
each sample as calculated by using the calibration model with 
correlation coefficients. As can be seen, differences between 
the model-predicted and reference values were acceptable, 
which testifies to the quality of the proposed model. The 
largest difference was for sample 3 (Figure 3), which was 
exhibiting the highest SD (i.e. the highest heterogeneity). 

Comparison between calibration models
Five freshly prepared samples were used in order test the 
quality of the CC-built model over other quantitative algo-
rithms for calculating the concentration commonly used in 
chemometric treatment for NIR chemical images. Recorded 
images of these samples were quantified using three cali-
bration models: CLS, MCR-ALS and partial least regression 
(PLSR). The results are shown in Table 4. CLS directly calcu-
lates the concentration of the compounds by using the pure 
spectra of the compounds and all of the spectra of the image. 
As can be observed in Table 4, CLS does not perform a correct 
prediction with both concentration and distribution param-
eters.

CC CLS MCR-ALS PLS
RMSEP 2.38 23.06 3.33 2.35
Bias –0.90 23.01 –2.65 –0.04
SEP 3.18 51.49 6.33 2.62

Table 4. Comparison of the results obtained by correlation coef-
ficients (CC) with classical least squares (CLS), multivariate curve 
resolution-alternating least squares (MCR-ALS) and partial least 
squares (PLS).

Sample SD (%) RSD (%) Reference (% ASA) Prediction (% ASA) Residual
1 0.0279 3.58 59.1 56.5 –2.6
2 0.0125 1.44 68.4 67.9 –0.5
3 0.0282 3.95 52.3 48.3 –4.0
4 0.00954 1.14 61.7 64.0 2.3
5 0.0073 0.83 70.3 70.6 0.3

Table 3. Comparison between nominal and predicted values of ASA concentration by using correlation coefficients. SD (%) and RSD (%) 
account for the standard deviation and relative standard deviation of the concentration, respectively.
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MCR-ALS also uses a direct quantification but with the 
difference that it works iteratively; optimising matrices for 
concentration and spectra. Using pure spectra for initial 
estimations allows significantly better results than CLS to 
be obtained. These two methods do not require a calibration 
set (only the spectra of components) and their results can be 
obtained faster than PLS and CC.

A calibration data set is a prerequisite and is always available 
for PLS and CC. This is both an advantage and a disadvantage 
in generating the most accurate chemical images because it 
is time consuming to produce a robust calibration.

CC, PLS and MCR-ALS provided similar predictions and 
consequently any of these three methodologies can be used 
for exploratory analysis of quantitative and qualitative levels in 
binary samples within the pharmaceutical industry.

The use of CC for samples of three or more 
components
This study concentrated on samples of two components; to 
extend it for more complex samples, some simulations were 
carried out and these showed us that this method could be 
extended to complex samples of three or more components if 
the objective is only to test the uniformity of blending.

Assuming the ideal situation, which is perfect blending of 
the sample, then the CC image of component 1 and a mixture 
containing component 1 and one (component 2), or further 
other components (components 2, 3, 4), should be a very 
uniform image of a constant CC. It does not matter if it is a 
binary mixture or a mixture of three or more components, for 
example.

In this case the mixture of three components (components 
2, 3 and 4) is a mixture, but since it is an ideal blend, the 
composition does not vary, and in fact it can be thought of 
as a “single” component (but which is in fact a mixture) and 
therefore the entire question returns to the CC of a binary 
mixture. And this is the same case as in pharmaceutical 
samples, which are composed of an active pharmaceutical 
ingredient and other components, and can also be considered 
as binary samples if they have a constant composition: API 

on one side and other components on the other. In these 
conditions the other components can be treated as a single 
component.

For non-uniform blending, the composition of the samples 
is heterogeneous, the CC image for component 1 (or any 
other component) has to vary and this variation will spatially 
represent the non-uniformity of the material.

This non-uniformity can be caused in three ways:
■■ The uniformity of component 1 does in fact vary, which you 
can see in the CC map.

■■ The uniformity of component 1 is very good, but the 
uniformity of component 2 changes: component 2 is a pure 
component and the relative concentration to 1 changes.

■■ Component 2 is in fact a mixture of more than one ingre-
dient, and the relative proportions change.
The problem is that if the blending is not uniform, this can 

be detected with this methodology, but it is impossible to say 
which of the three possible causes is the correct one.

Conclusions
Chemical imaging techniques can produce a very large amount 
of data and it is therefore essential to find simple tools that 
allow extraction of relevant information.

The use of correlation coefficients calculated from pure 
NIR spectra allow the construction of correlation maps which 
facilitate the expeditious observation of the distribution of 
analytes at the sample surface and therefore the rapid and 
accurate assessment of component distribution in mixtures.

Correlation maps, SD and RSD values, and histograms of the 
correlation maps provide useful information to assess mixture 
homogeneity. Moreover, correlation coefficients allow the easy 
development of quantitative models for predicting API surface 
contents as supplementary information to that obtained 
by visual inspection of the distribution of components in a 
powder mixture. Predictions and quality-related parameters 
are as good as those obtained with more complex multivariate 
calibration methodologies.

Correct application of spectral pre-treatments, appropriate 
selection of spectral bands and the resolution of the imaging 
system all influence the results obtained with the proposed 
methodology.

The need for pure spectra of the analytes necessitates 
that this technique cannot be used with natural products 
which do not have pure spectra. But in the pharmaceutical 
industry the pure spectrum of the compounds is easy to 
obtain, so this technique can be widely used. The CC itself 
can be used to perform an exploratory and initial analysis 
on the distribution, and even quantification. The main 
disadvantage of CC use is the degree of spectral similarity 
between components; high spectral differences between 
components improve the range of CC and the differences in 
concentration maps.

Despite these drawbacks, the ease with which CC can 
be calculated and processed by using univariate regression 
with direct interpolation to obtain the final result makes it 
an attractive choice for rapidly checking correct distribution 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 

 

Figure 3. Concentration map for ASA obtained in sample 3 (see 
Table 4).
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and extracting quantitative information about pharmaceutical 
blending processes among others.

Although only binary samples were studied, correlation 
coefficients can also be useful with mixtures in which one 
compound varies its concentration, and the others remain 
constant; since only two of the compounds vary their 
concentration, the concentration of the rest of the components 
remain constant.

If the objective is only to determine uniformity of blending, 
then the CC image map is very good for this, and easy and fast 
to compute, but it is not possible to know the reason why a 
mixture appears non-uniform.
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