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Introduction
When a consumer shops for meat, it is often the colour and 
texture which determines how appetising the meat looks and 
thereby which piece of meat is purchased. The manufacturers 
desire a long shelf life for their products and therefore want to 
produce meat products which have as slow a rate of change in 
colour as possible. It is evident from Figure 1 that the colour 
changes rapidly if a piece of ham is stored in air and exposed 
to light. This implies that it is sensible to investigate which 
storage environments and additives are useful in achieving a 
slow rate of change.

To be able to both find useful additives and storage environ-
ments, as well as showing the effect, it is essential to have an 
objective method to estimate the change in colour. A manual 

solution, which is the frame of reference for the developed 
method, is to let a sensory panel estimate the change of colour. 
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Abstract
Currently, no objective method exists for estimating the rate of change in the colour of meat. Consequently, the
purpose of this work is to develop a procedure capable of monitoring the change in colour of meat over time,
environment and ingredients. This provides a useful tool to determine which storage environments and ingredi-
ents a manufacturer should add to meat to reduce the rate of change in colour. The procedure consists of taking
multi-spectral images of a piece of meat as a function of time, clustering the pixels of these images into categories,
including several types of meat, and extracting colour information from each category. The focus has primarily
been on achieving an accurate categorisation since this is crucial to develop a useful method. The categorisation
is done by applying an orthogonal transformation followed by k-means clustering. The purpose of the orthogonal
transformation is to reduce the noise and amount of data while enhancing the difference between the categories.
The orthogonal transformations Principal Components Analysis (PCA), Minimum Noise Fraction (MNF) Analysis
and kernel based versions of these have been applied to test which produce the most accurate categorisation.
Keywords: Multi-spectral Imaging, Categorisation, Principal Components Analysis (PCA), Minimum Noise Frac-
tion (MNF) Analysis, Kernel Based Orthogonal Transformations, K-means Clustering.

1. Introduction

When a consumer shops for meat, it is often the colour and
texture which determines how appetizing the meat looks and
thereby which piece of meat is purchased. The manufactur-
ers desire a long shelf life for their products and therefore
want to produce meat products which have as slow a rate of
change in colour as possible. It is evident from Figure 1 that
the colour changes rapidly if a piece of ham is stored in air
and exposed to light. This implies that it is sensible to inves-
tigate which storage environments and additives are useful
in achieving a slow rate of change.

To be able to both find useful additives and storage envi-
ronments, as well as showing the effect, it is essential to have
an objective method to estimate the change in colour. A man-
ual solution, which is the frame of reference for the devel-
oped method, is to let a sensory panel estimate the change
of colour. This solution could be made nearly objective by
training the sensory panel thoroughly, but it would never be

(a) 0 hours (b) 22 hours

Figure 1: Illustrates the change in colour of a piece of ham
stored in air and exposed to light.

completely free of subjective opinions. Furthermore, it is ex-
pensive to train and test using a sensory panel.

The purpose of this work is therefore to develop an auto-
mated and therefore completely objective method which is
able to monitor the development of the colour of meat as a

Figure 1. Illustrates the change in colour of a piece of ham 
stored in air and exposed to light.
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This solution could be made nearly objective by training the 
sensory panel thoroughly, but it would never be completely 
free of subjective opinions. Furthermore, it is expensive to 
train and test using a sensory panel.

The purpose of this work is therefore to develop an auto-
mated and so completely objective method which is able to 
monitor the development of the colour of meat as a function 
of time, environment and additives. This has been achieved by 
taking multi-spectral images of a piece of meat of interest at 
consecutive time points. The images are then categorised into 
several categories, including fat and different types of meat. 
Hereby the colour of each type of meat can be extracted for 
each time point. It is thereby possible to monitor the colour of 
the types of meat as time passes and evaluate the effects of 
additives and environment.

Focus has been on the categorisation, since this step is 
crucial in achieving an accurate estimation of the change in 
colour. The categorisation consists of two steps; an orthogonal 
transformation followed by k-means clustering1 on a few of 
the most important factors of the transformation. The orthog-
onal transformation is applied to reduce the amount of data as 
well as to reduce the noise.

Several orthogonal transformations have been applied 
to investigate which is most suited for this application. The 
transformations are the traditional transformations principal 
components analysis (PCA)2 and minimum noise fraction (MNF) 
analysis3 as well as kernel-based versions of these transforma-
tions (kPCA4 and kMNF5).

Materials
The evaluated meat is a piece of ham consisting of reformed 
pork meat, but the procedure could be applied to any kind of 
meat. The ham is produced by adding brine to minced meat, 
mixing and then heat treating the mixture.6 The final product 
contains two different types of meat, in addition to, for example 
fat and gristle, which comes from different mixes of muscle 
types. These two types of meat are the reason why a slice 
of ham is especially interesting to analyse since it is difficult 
to distinguish between these in the visible spectrum, which 
is illustrated in Figure 2. It is believed that the difference 
between these two types of meat is significant and estimating 
the change in colour of each of the types of meat is therefore 
of interest.

This work uses multi-spectral images of the pieces of 
ham as inputs to the analysis. The ham used to illustrate the 
usability of the developed method is kept in cold storage and 
multi-spectral images are taken regularly for 38 days. An 
example of such a multi-spectral image can be seen in Figure 
3. The images are taken using Videometerlab,7 developed and 
produced by Videometer A/S.

The procedure is to place a meat sample under an Ulbricht 
sphere (a sphere painted white on the inside giving diffuse 
backscattering of the light), which is illuminated with light-
emitting diodes (LEDs) placed along the rim of the sphere. The 

LEDs fire light pulses at specified wavelengths into the sphere 
to be reflected as scattered light onto the meat sample. This 
gives a uniform and reproducible illumination over a large 
area.

The multi-spectral images used here consist of n pixels 
where each pixel xi has p = 18 variables corresponding to 18 
colour bands. The data is collected in a data matrix X = [x1

T, 
x2

T, ..., xn
T]T where each row corresponds to a pixel and each 

column to a variable. X therefore has size n × p. Each band 
corresponds to a snapshot taken when the LEDs fire pulses 
with a certain wavelength. The wavelengths used range from 
ultraviolet (395 nm) to near infrared (970 nm) and they are 
listed in Table 1.

Method
The procedure, to objectively analyse the change of colour 
of different types of meat in a piece of ham, is illustrated in 
Figure 4 and described in details in the following.

1. Take multi-spectral images of a piece of ham of interest at 
different points in time.

2. Do an orthogonal transformation of each of the multi-
spectral images which results in a set of factors instead of the 
set of colour bands. This is done both to reduce the noise and 
the amount of data while maintaining the information.

3. Apply k-means clustering on a few of the most significant 
factors, thereby clustering the pixels of each image into four 
categories including the two types of meat.

4. Use the categorised images to extract the median colours 
(one for each colour band) of each of the categories from each 
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Figure 2: A pseudo RGB image of a piece of ham, i.e., an
image constructed from the multi-spectral image such that it
resembles a picture taken with a normal camera. This figure
illustrates that the ham consists of several categories includ-
ing fat, gristle and two types of meat. From this, it is evident
that it is hard to distinguish between the two types of meat in
the visible spectrum.

function of time, environment and additives. This has been
achieved by taking multi-spectral images of a piece of meat
of interest at consecutive time points, which is described in
Section 2. The images are then categorised into several cate-
gories, including fat and different types of meat. Hereby the
colour of each type of meat can be extracted for each time
point. It is thereby possible to monitor the colour of the types
of meat as time passes and evaluate the effects of additives
and environment. The method is described in depth in Sec-
tion 3 and the results are presented in Section 6.

Focus has been on the categorisation since this step is cru-
cial to achieve an accurate estimation of the change in colour.
The categorisation consists of two steps; an orthogonal trans-
formation followed by k-means clustering [Mac67] on a few
of the most important factors of the transformation. The or-
thogonal transformation is applied to reduce the amount of
data as well as to reduce the noise.

Several orthogonal transformations have been applied to
investigate which is most suited for this application. The
transformations are the traditional transformations Principal
Components Analysis (PCA) [Hot33] and Minimum Noise
Fraction (MNF) analysis [GBSC88] which are described in
Section 4. Furthermore, kernel based versions of these trans-
formations (kPCA [SSM98] and kMNF [Nie11]) are applied
and described in Section 5. A discussion of the applicability
of these transformations can be found in Section 7.

Figure 3: An example of a multi-spectral image of a piece
of ham which consists of 18 colour bands. The wavelengths
used to capture the spectral bands range from ultraviolet
(395 nm) which is seen in the top left corner to near infra-red
(970 nm) which is depicted in the bottom right corner, where
the wavelength is increasing from left to right and thereafter
from top to bottom. A pseudo RGB image of this piece of ham
can be seen in Figure 2.

2. Materials

The evaluated meat is a piece of ham consisting of reformed
pork meat, but the procedure could be applied to any kind of
meat. The ham is produced by adding brine to minced meat,
mixing and then heat treating the mixture [Fei06]. The fi-
nal product contains two different types of meat, in addition
to e.g. fat and gristle, which comes from different mixes of
muscle types. These two types of meat is the reason why a
slice of ham is especially interesting to analyse since it is
difficult to distinguish between these in the visible spectrum
which is illustrated in Figure 2. It is believed, that the dif-
ference between these two types of meat is significant and
estimating the change in colour of each of the types of meat
is therefore of interest.

This work uses multi-spectral images of the pieces of ham
as inputs to the analysis. The ham used to illustrate the us-

Figure 2. A pseudo RGB image of a piece of ham, i.e. an 
image constructed from the multi-spectral image such that it 
resembles a picture taken with a normal camera. This figure 
illustrates that the ham consists of several categories includ-
ing fat, gristle and two types of meat. From this, it is evident 
that it is hard to distinguish between the two types of meat in 
the visible spectrum.
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of the multi-spectral images. Since the multi-spectral images 
have been taken at different points in time, the development of 

the median colour values can be plotted as a function of time 
for each category. The median is used to reduce the influence 
of pixels which has been wrongly classified.

To reduce the amount of data while maintaining the infor-
mation, an orthogonal transformation is applied. An obvious 
choice is to use PCA,2 but the aim is also to reduce the noise 
which can be achieved by using a MNF3 analysis. Furthermore, 
it is investigated whether applying kernel-based versions of 
PCA (kPCA)4 and MNF (kMNF)5 using a Gaussian kernel gives 
a better distinction between the categories.

After the transformation a relatively simple k-means 
clustering1 is used to cluster the pixels in the image. The 
k-means clustering seeks to partition the n pixels X = [x1

T, x2
T, 

..., xn
T]T in the image into k clusters C = {C1, C2, ..., Ck}, called 

categories in this work, so as to minimise the within-cluster 
sum of squares

arg min
C

j i
x Ci

k

j i

x µ−∑∑
∈=1

2

where µi is the mean of pixels in Ci.

Traditional transformations
This section gives a brief introduction to the traditional orthog-
onal transformations PCA and MNF analysis. The transforma-
tions work on the pixels in the image X where, the empirical 
mean has been subtracted from the data set to produce an X 
with zero empirical mean.
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Figure 2: A pseudo RGB image of a piece of ham, i.e., an
image constructed from the multi-spectral image such that it
resembles a picture taken with a normal camera. This figure
illustrates that the ham consists of several categories includ-
ing fat, gristle and two types of meat. From this, it is evident
that it is hard to distinguish between the two types of meat in
the visible spectrum.

function of time, environment and additives. This has been
achieved by taking multi-spectral images of a piece of meat
of interest at consecutive time points, which is described in
Section 2. The images are then categorised into several cate-
gories, including fat and different types of meat. Hereby the
colour of each type of meat can be extracted for each time
point. It is thereby possible to monitor the colour of the types
of meat as time passes and evaluate the effects of additives
and environment. The method is described in depth in Sec-
tion 3 and the results are presented in Section 6.

Focus has been on the categorisation since this step is cru-
cial to achieve an accurate estimation of the change in colour.
The categorisation consists of two steps; an orthogonal trans-
formation followed by k-means clustering [Mac67] on a few
of the most important factors of the transformation. The or-
thogonal transformation is applied to reduce the amount of
data as well as to reduce the noise.

Several orthogonal transformations have been applied to
investigate which is most suited for this application. The
transformations are the traditional transformations Principal
Components Analysis (PCA) [Hot33] and Minimum Noise
Fraction (MNF) analysis [GBSC88] which are described in
Section 4. Furthermore, kernel based versions of these trans-
formations (kPCA [SSM98] and kMNF [Nie11]) are applied
and described in Section 5. A discussion of the applicability
of these transformations can be found in Section 7.

Figure 3: An example of a multi-spectral image of a piece
of ham which consists of 18 colour bands. The wavelengths
used to capture the spectral bands range from ultraviolet
(395 nm) which is seen in the top left corner to near infra-red
(970 nm) which is depicted in the bottom right corner, where
the wavelength is increasing from left to right and thereafter
from top to bottom. A pseudo RGB image of this piece of ham
can be seen in Figure 2.

2. Materials

The evaluated meat is a piece of ham consisting of reformed
pork meat, but the procedure could be applied to any kind of
meat. The ham is produced by adding brine to minced meat,
mixing and then heat treating the mixture [Fei06]. The fi-
nal product contains two different types of meat, in addition
to e.g. fat and gristle, which comes from different mixes of
muscle types. These two types of meat is the reason why a
slice of ham is especially interesting to analyse since it is
difficult to distinguish between these in the visible spectrum
which is illustrated in Figure 2. It is believed, that the dif-
ference between these two types of meat is significant and
estimating the change in colour of each of the types of meat
is therefore of interest.

This work uses multi-spectral images of the pieces of ham
as inputs to the analysis. The ham used to illustrate the us-

Figure 3. An example of a multi-spectral image of a piece of 
ham which consists of 18 colour bands. The wavelengths used 
to capture the spectral bands range from ultraviolet (395 nm) 
which is seen in the top-left corner to near infrared (970 nm) 
which is depicted in the bottom-right corner, where the wave-
length is increasing from left to right and thereafter from top 
to bottom. A pseudo RGB image of this piece of ham can be 
seen in Figure 2.
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Figure 4: Illustrates the workflow of the developed procedure.

p 1 2 3 4 5 6
λ(nm) 395 430 450 470 505 565
p 7 8 9 10 11 12
λ(nm) 590 630 645 660 700 850
p 13 14 15 16 17 18
λ(nm) 870 890 910 940 950 970

Table 1: A table of the wavelength λ used to capture band p
of the multi-spectral image.

ability of the developed method is kept in cold storage and
multi-spectral images are taken regularly for 38 days. An ex-
ample of such a multi-spectral image can be seen in Figure
3. The images are taken using Videometerlab [CFH00], de-
veloped and produced by Videometer A/S.

The procedure is to place a meat sample under an Ulbricht
sphere (a sphere painted white on the inside giving diffuse
backscattering of the light), which is illuminated with light-
emitting diodes (LEDs) placed along the rim of the sphere.
The LEDs fire light pulses at specified wavelengths into the
sphere to be reflected as scattered light onto the meat sample.
This gives a uniform and reproducible illumination over a
large area.

The multi-spectral images used here consist of n pixels
where each pixel xi has p = 18 variables corresponding
to 18 colour bands. The data is collected in a data matrix
X = [x1,x2, . . . ,xn]

T where each row corresponds to a pixel
and each column to a variable. X therefore has size n× p.
Each band corresponds to a snapshot taken when the LEDs
fire pulses with a certain wavelength. The wavelengths used
range from ultraviolet (395 nm) to near infra-red (970 nm)
and they are listed in Table 1.

3. Method

The procedure, to objectively analyse the change of colour
of different types of meat in a piece of ham, is illustrated in
Figure 4 and described in details in the following.

1. Take multi-spectral images of a piece of ham of interest
at different points in time.

2. Do an orthogonal transformation of each of the multi-
spectral images which results in a set of factors instead
of the set of colour bands. This is done both to reduce
the noise and the amount of data while maintaining the
information.

3. Apply k-means clustering on a few of the most significant
factors, thereby clustering the pixels of each image into
four categories including the two types of meat.

4. Use the categorised images to extract the median colours
(one for each colour band) of each of the categories
from each of the multi-spectral images. Since the multi-
spectral images have been taken at different points in
time, the development of the median colour values can
be plotted as a function of time for each category. The
median is used to reduce the influence of pixels which
has been wrongly classified.

To reduce the amount of data while maintaining the
information an orthogonal transformation is applied. An
obvious choice is to use Principal Components Analysis
(PCA) [Hot33], but the aim is also to reduce the noise
which can be achieved by using a Minimum Noise Frac-
tion (MNF) [GBSC88] analysis. These two transformations
are described in Section 4. Furthermore, it is investigated
whether applying kernel based versions of PCA (kPCA
[SSM98]) and MNF (kMNF [Nie11]) using a Gaussian ker-
nel gives a better distinction between the categories. The ker-
nel based methods are described in Section 5.

After the transformation a relatively simple k-means clus-
tering [Mac67] is used to cluster the pixels in the im-
age. The k-means clustering seeks to partition the n pix-
els X = [x1,x2, . . . ,xn]

T in the image into k clusters C =
{C1,C2, . . . ,Ck}, called categories in this work, so as to min-
imize the within-cluster sum of squares

argmin
C

k

∑
i=1

∑
x j∈Ci

‖ x j −µi ‖2

where µi is the mean of pixels in Ci.

Figure 4. Illustrates the workflow of the developed procedure.

p 1 2 3 4 5 6

l(nm) 395 430 450 470 505 565

p 7 8 9 10 11 12

l(nm) 590 630 645 660 700 850

p 13 14 15 16 17 18

l(nm) 870 890 910 940 950 970

Table 1. A table of the wavelength l used to capture band p of the 
multi-spectral image.
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Principal components analysis
The traditional PCA2 is a linear transformation which maxim-
ises the variance of the data set X by projecting the data onto a 
vector u which is chosen such that the Rayleigh quotient

λ( ) .u
u u

u u
=

T

T
S

is maximised. Here S is the variance–covariance matrix of the 
data set X;

S=
−

X XT

n 1
.

This maximisation problem can be solved by solving the 
eigenvalue problem

SU = UL.

S has the size p × p (where p is the number of variables), 
which leads to p eigenvalues li and corresponding mutually 
conjugate eigenvectors ui. The eigenvalues are gathered in 
the diagonal of the p × p matrix L, while the eigenvectors are 
gathered in the columns of the p × p matrix U.

The principal components F are then simply found by 
projecting the de-meaned data X onto the eigenvectors U

F = XU.

The data have been transformed from the 18 spectral bands 
of the multi-spectral image X into the 18 principal compo-
nents F, where the first three are displayed in Figure 5(a). 
The first principal component corresponds to maximum vari-
ance, whereas the following correspond to maximum variance 
under the condition that it is orthogonal to the preceding prin-
cipal components.

Minimum noise fraction
The MNF3 analysis seeks to orthogonally transform the image 
X, by a vector u, such that it maximises the signal-to-noise 
ratio, i.e. maximises the image quality. This transformation 
therefore seeks to maximise

Var

Var

{ }

{ }
.

u x

u x

u u

u u

T
S

T
N

T

T
N

= −
S
S

1

Here xS is a pixel in the image that corresponds to signal XS, 
xN is a pixel in the image that corresponds to noise XN, S is 
the variance–covariance matrix of X, while SN is the variance–
covariance matrix of XN. Furthermore, XS and XN are assumed 
uncorrelated S = SS + SN and additive X = XN + XS. XN is found 
by estimating the signal XS by smoothing X and utilising that 
XN = X – XS. Each pixel xi Î XS is estimated by fitting a second 
order polynomial to a 5 pixels × 5 pixels neighbourhood of xi and 
weighting this filter by a Gaussian weight.
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(a) PCA

(b) MNF

Figure 5: The first three factors which depict maximum variance or signal-to-noise ratio, produced by transforming the multi-
spectral image from Figure 3 by the two transformations PCA and MNF. The choice to show only three factors of PCA, is due
to the fact that most (> 90 %) of the variation is contained in these factors.

4. Traditional transformations

This section gives a brief introduction to the traditional
orthogonal transformations Principal Components Analysis
(PCA) and Minimum Noise Fraction (MNF) analysis. The
transformations work on the pixels in the image X (described
in Section 2). Furthermore, the empirical mean has been sub-
tracted from the data set to produce an X with zero empirical
mean.

Principal Components Analysis

The traditional PCA [Hot33] is a linear transformation
which maximizes the variance of the data set X by project-
ing the data onto a vector u which is chosen such that the
Rayleigh quotient

λ(u) = uT Σu
uT u

.

is maximised. Here Σ is the variance-covariance matrix of
the data set X ; Σ = XT X

n−1 .

This maximization problem can be solved by solving the
eigenvalue problem

ΣU =UΛ.

Σ has the size p× p (where p is the number of variables),
which leads to p eigenvalues λi and corresponding mutually

conjugate eigenvectors ui. The eigenvalues are gathered in
the diagonal of the p× p matrix Λ, while the eigenvectors
are gathered in the columns of the p× p matrix U .

The principal components F are then simply found by
projecting the demeaned data X onto the eigenvectors U

F = XU.

The data have been transformed from the 18 spectral
bands of the multi-spectral image X into the 18 principal
components F where the first three are displayed in Fig-
ure 5(a). The first principal component corresponds to max-
imum variance, whereas the following correspond to maxi-
mum variance under the condition that it is orthogonal to the
preceding principal components.

Minimum Noise Fraction

The Minimum Noise Fraction (MNF) [GBSC88] analysis
seeks to orthogonally transform the image X , by a vector u,
such that it maximizes the signal-to-noise ratio, i.e., maxi-
mizes the image quality. This transformation therefore seeks
to maximize

Var{uT XS}
Var{uT XN}

=
uT Σu

uT ΣNu
−1

Here XS is the image that corresponds to signal, XN is the im-
age that corresponds to noise, Σ is the variance-covariance

Figure 5. The first three factors which depict maximum variance or signal-to-noise ratio, produced by transforming the multi-spectral 
image from Figure 3 by the two transformations PCA and MNF. The choice to show only three factors of PCA, is due to the fact that most 
(>90%) of the variation is contained in these factors.
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The sought transformation can be found by maximising the 
Rayleigh quotient

λ( ) .u
u u

u u
=

T

T
N

S
S

The solution to this is the solution to a general eigenvalue 
problem

SU = SNUL.

The de-meaned original data X is then projected onto the 
eigenvectors U, which results in the factors F

F = XU.

An example of an MNF transformation on a multi-spectral 
image is seen in Figure 5(b).

Kernel-based transformations
In this section, a description of kernel-based versions of the 
traditional orthogonal transformations PCA and MNF will be 
given as well as a brief introduction to kernel-based methods. 
For a more elaborate description of kernel-based methods 
and its theory, see Reference 8.

The kernel-based approach consists of two parts
•	 A mapping f of the data into a feature space using a kernel 

function k.
•	 An analysis of the mapped data using a pattern analysis 

algorithm.
The idea is that it is possible to analyse the data using a 

linear pattern analysis algorithm after the mapping, which was 
not possible before. The approach is illustrated in Figure 6 for 
a classification problem.

The kernel function
The pattern analysis algorithms are implemented such 
that only the pairwise inner products of the mapped data 
f(xi)

Tf(xj) are needed, which means it is not necessary to 
specify the mapping explicitly. These pairwise inner products 
can be efficiently computed from the original data using a 
kernel function k(xi,xj) = f(xi)

Tf(xj). Examples of kernel func-
tions are

Polynomial (homogeneous)

k(xi, xj) = (xi
T xj)

d, d Î , d > 0.

Exponential

κ σ( , ) .x x

x x

i j e
i j

=
−
−

2 2

Gaussian

κ σ( , ) .x x

x x

i j e
i j

=
−
−

2

22

The input parameters xi and xj are values of the orig-
inal data, which are vectors of size p, p ≥ 1. Note that the 
distance measured between xi and xj is not fixed and can, 
for example, be chosen to be the L1 norm ||xi – xj|| or the L2 
norm ||xi – xj||2.

A matrix called the kernel matrix K which consists of 
elements Kij = k(xi,xj) = f(xi)

Tf(xj) is then constructed. The 
kernel matrix must be positive semi-definite and it is always 
symmetric since k(xi,xj) = k(xj,xi) for any kernel function. If n is 
again the number of data points, i.e. the number of pixels in 
the image, the size of the kernel matrix is n × n.

This work uses a Gaussian kernel function since it is 
most commonly used in image analysis. Figure 7 illustrates 
how changing the s-value, i.e. the standard deviation of the 
Gaussian curve, changes the result of a kMNF transformation. 
Throughout the rest of this paper, a s-value of s = 3 · s0, where 
s0 is the median distance between pixels in original feature 
space, is used since this seems to enhance the difference 
between the categories.

The pattern analysis methods
When the kernel matrix K is constructed the mapped data 
are analysed using a pattern analysis method. The pattern 
analysis methods in this case are the two eigenvalue-
decomposition methods PCA and MNF, which are described 
below.

Kernel-based principal components analysis
The method used in traditional PCA, is called the primal 
method, whereas the method used in kernel-based principal 
components analysis (kPCA),4 is called the dual method. The 
dual method is an analysis or eigenvalue decomposition, of the 
Gram matrix G = XXT instead of the variance–covariance matrix 
S = [1 / (n – 1)]XTX. From a rewriting of the original eigenvalue 
problem, it is apparent that this method finds the same solu-
tion as PCA
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Figure 6: An illustration of a mapping of data into feature
space where it is possible to use a linear analysis to separate
the data into two classes which was not possible in the orig-
inal space [STC04]. For illustration purposes the mapping
is from two to two dimensions, but often the mapping is into
a higher dimensional space.

matrix of X , while ΣN is the variance-covariance matrix
of XN . Furthermore, XS and XN are assumed uncorrelated
Σ = ΣS + ΣN and additive X = XN + XS. XN is found by
estimating the signal XS by smoothing X and utilising that
XN = X −XS. Each pixel xi ∈ XS is estimated by fitting a 2.
order polynomial to a 5pixels×5pixels neighbourhood of xi
and weighting this filter by a Gaussian weight.

The sought transformation can be found by maximizing
the Rayleigh quotient

λ(u) = uT Σu
uT ΣNu

.

The solution to this is the solution to a general eigenvalue
problem

ΣU = ΣNUΛ.

. The demeaned original data X is then projected onto the
eigenvectors U , which results in the factors F

F = XU.

An example of an MNF transformation on a multi-spectral
image is seen in Figure 5(b).

5. Kernel based transformations

In this section, a description of kernel based versions of the
traditional orthogonal transformations PCA and MNF will
be given as well as a brief introduction to kernel based meth-
ods. For a more elaborate description of kernel based meth-
ods and its theory, see [STC04].

The kernel based approach consists of two parts

• A mapping φ of the data into a feature space using a kernel
function κ described in Section 5.1.

(a) kMNF (σ = σ0)

(b) kMNF (σ = 3 ·σ0)

(c) kMNF (σ = 5 ·σ0)

Figure 7: Illustrates the impact of using different σ-values
when transforming the multi-spectral image in Figure 3 by a
kMNF transformation using a Gaussian kernel function.

• An analysis of the mapped data using a pattern analysis
algorithm described in Section 5.2.

The idea is that it is possible to analyse the data using
a linear pattern analysis algorithm after the mapping which
was not possible before. The approach is illustrated in Figure
6 for a classification problem.

5.1. The kernel function

The pattern analysis algorithms are implemented such
that only the pairwise inner products of the mapped data
φ(xi)

T φ(x j) are needed, which means it is not necessary to
specify the mapping explicitly. These pairwise inner prod-
ucts can be efficiently computed from the original data us-
ing a kernel function κ(xi,x j) = φ(xi)

T φ(x j). Examples of
kernel functions are

Polynomial (homogeneous)

κ(xi,x j) = (xT
i x j)

d , d ∈ N, d > 0.

Exponential

κ(xi,x j) = e−
‖xi−x j‖

2σ2 .

Gaussian

κ(xi,x j) = e−
‖xi−x j‖2

2σ2 .

The input parameters xi and x j are values of the original
data, which are vectors of size p, p ≥ 1. Note that the dis-
tance measure between xi and x j is not fixed and can for

Figure 6. An illustration of a mapping of data into feature space 
where it is possible to use a linear analysis to separate the data 
into two classes which was not possible in the original space.8 
For illustration purposes the mapping is from two to two 
dimensions, but often the mapping is into a higher dimensional 
space.
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Here the eigenvectors ui in the columns of U are a solution to 
the traditional PCA and the eigenvectors vi in the columns of 
V solve the dual problem. These eigenvectors are related by 
U = XTVL–1 / 2, where L–1 / 2 is a diagonal matrix with elements 
1 / Ö[(n – 1)li].

Instead of using the data set X directly to compute the Gram 
matrix G = XXT, the data X is mapped by the mapping f to 
F = [f(x1)

T, f(x2)
T, …, f(xn)T]T before the matrix KXX = FFT is 

computed. Consequently, the kernel matrix KXX contains the 
inner product of the mapped data. The eigenvalue problem is 
then given by

1
1n−

=K V VXX L

and the solution to the original problem is U = FTVL–1 / 2.
The principal components F of the kPCA can be found in the 

same way as for the traditional methods, namely by projecting 
the data, which this time is mapped, F onto the eigenvectors U

F = FU = FFTVL–1 / 2 = KXXVL
–1 / 2.

An example of the first three factors of a kPCA transforma-
tion applied to a multi-spectral image is seen in Figure 8(a).

Kernel minimum noise fraction
To deduce the kernel-based MNF (kMNF) method,5 the same 
procedure is used as for the kPCA transformation. The eigen-
value problem of the traditional MNF is rewritten to the dual 
problem, where Gram matrices are analysed instead of vari-
ance–covariance matrices

1
1
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The last step is made by replacing U with XTV on both sides.
The data X and XN are then mapped to feature space using 

the mapping f

XXTXXTV = XXT
NXNX

TVL Û

FFTFFTV = FFN
TFNF

TVL Û

K V K K VXX XX XX
2 =

N N

T L.

Here KXXN
 is a matrix containing the inner products between 

the mapped original data F and the mapped noise FN. The 
problem is a general eigenvalue problem and the eigenvectors 
V are estimated. The original eigenvectors U are then related 
to V by U = FTV.

Again, the mapped data F are projected onto the eigenvec-
tors U to find the factors F

F = FU = FFTV = KXXV.

It is hereby shown how to perform a kMNF transforma-
tion, but it is also necessary to specify how the kernel matrix 
KXXN

 = FFN
T is constructed. This is an issue since the noise 

image XN is estimated using subtraction (XN = X – XS) and 
since a mapping is applied. This gives two possible ways to 
construct FN, namely estimate the noise and then map the 
noise to feature space, f(xN) = f(x – xS), or map the image and 
signal image and then estimate the noise in feature space 
f(xN) = f(x) – f(xS). The first option results in KXXN

 = KXX – XS
 

and the second in KXXN
 = KXX – KXXS

. Which one to choose is 
discussed by Gómez-Chova et al.9 who find that it is correct to 
estimate the noise in kernel space, wherefore KXXN

 = KXX – KXXS
 

is used in this work.
The first three factors of a transformation of kMNF are 

displayed in Figure 8(b).

Results
A piece of fresh ham has been chosen to illustrate the effects 
of the transformations and resulting categorisation. A multi-
spectral image of this ham is shown in Figure 3 and a pseudo 
RGB image is found in Figure 2. The results of the PCA, MNF, 
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Figure 6: An illustration of a mapping of data into feature
space where it is possible to use a linear analysis to separate
the data into two classes which was not possible in the orig-
inal space [STC04]. For illustration purposes the mapping
is from two to two dimensions, but often the mapping is into
a higher dimensional space.

matrix of X , while ΣN is the variance-covariance matrix
of XN . Furthermore, XS and XN are assumed uncorrelated
Σ = ΣS + ΣN and additive X = XN + XS. XN is found by
estimating the signal XS by smoothing X and utilising that
XN = X −XS. Each pixel xi ∈ XS is estimated by fitting a 2.
order polynomial to a 5pixels×5pixels neighbourhood of xi
and weighting this filter by a Gaussian weight.

The sought transformation can be found by maximizing
the Rayleigh quotient

λ(u) = uT Σu
uT ΣNu

.

The solution to this is the solution to a general eigenvalue
problem

ΣU = ΣNUΛ.

. The demeaned original data X is then projected onto the
eigenvectors U , which results in the factors F

F = XU.

An example of an MNF transformation on a multi-spectral
image is seen in Figure 5(b).

5. Kernel based transformations

In this section, a description of kernel based versions of the
traditional orthogonal transformations PCA and MNF will
be given as well as a brief introduction to kernel based meth-
ods. For a more elaborate description of kernel based meth-
ods and its theory, see [STC04].

The kernel based approach consists of two parts

• A mapping φ of the data into a feature space using a kernel
function κ described in Section 5.1.

(a) kMNF (σ = σ0)

(b) kMNF (σ = 3 ·σ0)

(c) kMNF (σ = 5 ·σ0)

Figure 7: Illustrates the impact of using different σ-values
when transforming the multi-spectral image in Figure 3 by a
kMNF transformation using a Gaussian kernel function.

• An analysis of the mapped data using a pattern analysis
algorithm described in Section 5.2.

The idea is that it is possible to analyse the data using
a linear pattern analysis algorithm after the mapping which
was not possible before. The approach is illustrated in Figure
6 for a classification problem.

5.1. The kernel function

The pattern analysis algorithms are implemented such
that only the pairwise inner products of the mapped data
φ(xi)

T φ(x j) are needed, which means it is not necessary to
specify the mapping explicitly. These pairwise inner prod-
ucts can be efficiently computed from the original data us-
ing a kernel function κ(xi,x j) = φ(xi)

T φ(x j). Examples of
kernel functions are

Polynomial (homogeneous)

κ(xi,x j) = (xT
i x j)

d , d ∈ N, d > 0.

Exponential

κ(xi,x j) = e−
‖xi−x j‖

2σ2 .

Gaussian

κ(xi,x j) = e−
‖xi−x j‖2

2σ2 .

The input parameters xi and x j are values of the original
data, which are vectors of size p, p ≥ 1. Note that the dis-
tance measure between xi and x j is not fixed and can for

Figure 7. Illustrates the impact of using different s-values 
when transforming the multi-spectral image in Figure 3 by a 
kMNF transformation using a Gaussian kernel function.
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kPCA and kMNF transformations on this image are seen in 
Figures 5 and 8 and the first factor of each of the transforma-
tions is seen in Figure 9. The four resulting categorisations, 
using the three first factors of each of the transformations, are 
seen in Figure 10.

To illustrate that the method works on other multi-spectral 
images, images of four pieces of ham, which have been kept 
in cold storage a different amount of time, are categorised 
and shown in Figure 11. In this case, the MNF transformation 
was used.

After categorising the multi-spectral images, it is possible 
to extract the median of each colour band and each type of 
meat from each image. A data set of 10 multi-spectral images, 
taken of pieces of ham which have been kept in cold storage 

for up to 38 days, is used to create the graphs in Figure 12. 
The graphs depict the change in the median of each of the 
ten visible colour bands of meat type 1 [Figure 12(a)] and 
type meat type 2 [Figure 12(b)]. The change in each of the ten 
visible colour bands is depicted by a line in a colour corre-
sponding to the wavelength. Only the visible colours are of 
interest since the purpose is to investigate how the customer 
sees the change in colour.

Discussion
In this section, the results of the four transformations will be 
compared and their advantages and disadvantages will be 
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(a) kPCA

(b) kMNF

Figure 8: The first three factors which depict maximum variance or signal-to-noise ratio, produced by transforming the multi-
spectral image from Figure 3 by the two kernel based transformations kPCA and kMNF using a Gaussian kernel function with
parameter σ = 3 ·σ0, where σ0 is the median distance between pixels in original feature space.

(a) PCA (b) MNF (c) kPCA (σ = 3 ·σ0) (d) kMNF (σ = 3 ·σ0)

Figure 9: A comparison between the first factor of PCA, MNF, kPCA and kMNF transformations applied on the multi-spectral
image seen in Figure 3. Both the kPCA and kMNF transformation uses a Gaussian kernel with σ = 3 ·σ0.

KXXN = K(X ,X)− K(X ,XS). Which one to choose is dis-
cussed by Gómez-Chova et al. [GCNCV11] who finds that
it is correct to estimate the noise in kernel space wherefore
KXXN = K(X ,X)−K(X ,XS) is used in this work.

The first three factors of a transformation of kMNF are
displayed in Figure 8(b).

6. Results

A piece of fresh ham has been chosen to illustrate the ef-
fects of the transformations and resulting categorisation. A
multi-spectral image of this ham is shown in Figure 3 and an
pseudo RGB image is found in Figure 2. The results of the

PCA, MNF, kPCA and kMNF transformations on this im-
age are seen in Figures 5 and 8 and the first factor of each
of the transformations is seen in Figure 9. The four resulting
categorisations, using the three first factors of each of the
transformations, are seen in Figure 10.

To illustrate that the method works on other multi-spectral
images, images of four pieces of ham, which has been kept in
cold storage a different amount of time, are categorised and
shown in Figure 11. In this case, the MNF transformation
was used.

After categorising the multi-spectral images, it is possible
to extract the median of each colour band and each type of
meat from each image. A data set of 10 multi-spectral im-

Figure 8. The first three factors which depict maximum variance or signal-to-noise ratio, produced by transforming the multi-spectral 
image from Figure 3 by the two kernel-based transformations kPCA and kMNF using a Gaussian kernel function with parameter 
s = 3 · s0, where s0 is the median distance between pixels in original feature space.
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Figure 8: The first three factors which depict maximum variance or signal-to-noise ratio, produced by transforming the multi-
spectral image from Figure 3 by the two kernel based transformations kPCA and kMNF using a Gaussian kernel function with
parameter σ = 3 ·σ0, where σ0 is the median distance between pixels in original feature space.
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Figure 9: A comparison between the first factor of PCA, MNF, kPCA and kMNF transformations applied on the multi-spectral
image seen in Figure 3. Both the kPCA and kMNF transformation uses a Gaussian kernel with σ = 3 ·σ0.

KXXN = K(X ,X)− K(X ,XS). Which one to choose is dis-
cussed by Gómez-Chova et al. [GCNCV11] who finds that
it is correct to estimate the noise in kernel space wherefore
KXXN = K(X ,X)−K(X ,XS) is used in this work.

The first three factors of a transformation of kMNF are
displayed in Figure 8(b).

6. Results

A piece of fresh ham has been chosen to illustrate the ef-
fects of the transformations and resulting categorisation. A
multi-spectral image of this ham is shown in Figure 3 and an
pseudo RGB image is found in Figure 2. The results of the

PCA, MNF, kPCA and kMNF transformations on this im-
age are seen in Figures 5 and 8 and the first factor of each
of the transformations is seen in Figure 9. The four resulting
categorisations, using the three first factors of each of the
transformations, are seen in Figure 10.

To illustrate that the method works on other multi-spectral
images, images of four pieces of ham, which has been kept in
cold storage a different amount of time, are categorised and
shown in Figure 11. In this case, the MNF transformation
was used.

After categorising the multi-spectral images, it is possible
to extract the median of each colour band and each type of
meat from each image. A data set of 10 multi-spectral im-

Figure 9. A comparison between the first factor of PCA, MNF, kPCA and kMNF transformations applied on the multi-spectral image 
seen in Figure 3. Both the kPCA and kMNF transformation uses a Gaussian kernel with s = 3 · s0.
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discussed. Furthermore, the applicability of the procedure will 
be evaluated.

The traditional orthogonal transformations have several 
advantages compared to the kernel-based ones. They are 
well established and widely used, which means many people 
know them and more importantly know how to use them. 
Furthermore, they are relatively fast and have a small memory 
consumption. The latter is especially important when working 
with images, since imaging often produces a large amount of 
data.

The data matrix X has size n × p, i.e. number of pixels in the 
image times number of colour bands. The variance–covari-
ance matrix S used in the traditional transformations is there-
fore of size p × p, which in the case presented here is 18 × 18. 
The Gram matrix on the other hand is of size n × n, which 
means it is a huge matrix with a size of the order millions 
times millions. This results in infeasible memory consump-
tion, when using kernel-based transformations.

The solution to the problem adopted here is random sub-
sampling. This means a subset of the data is randomly chosen 
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(a) PCA (b) MNF (c) kPCA (σ = 3 ·σ0) (d) kMNF (σ = 3 ·σ0)

Figure 10: The categories of the multi-spectral image from Figure 3 using either PCA, MNF, kPCA or kMNF followed by
k-means clustering. The k-means clustering algorithm uses the first three factors of the transformations (seen in Figures 5 and
8) and divides the pixels into four categories. The four categories corresponds to meat type 1 (dark grey), meat type 2 (grey),
fat (light grey) and other (white).

(a) 4 days (b) 7 days (c) 14 days (d) 17 days

Figure 11: The categories (meat type 1 (dark grey), meat type 2 (grey), fat (light grey) and other (white)) extracted from four
different multi-spectral images using the developed method which utilises an MNF transformation. The four multi-spectral
images on which the method was applied has been kept in cold storage for the duration depicted in the caption.

ages, taken of pieces of ham which have been kept in cold
storage for up till 38 days, is used to create the graphs in
Figure 12. The graphs depict the change in the median of
each of the ten visible colour bands of meat type 1 (Figure
12(a)) and type meat type 2 (Figure 12(b)). The change in
each of the ten visible colour bands is depicted by a line in
an colour corresponding to the wavelength. Only the visible
colours are of interest since the purpose is to investigate how
the customer sees the change in colour.

7. Discussion

In this section, the results of the four transformations will
be compared and their advantages and disadvantages will be
discussed. Furthermore, the applicability of the procedure
will be evaluated.

The traditional orthogonal transformations have several
advantages compared to the kernel based ones. They are
well established and widely used, which means many peo-
ple know them and more importantly know how to use them.
Furthermore, they are relatively fast and have a small mem-
ory consumption. The latter is especially important when
working with images, since imaging often produces a large
amount of data.

The data matrix X has size n× p, i.e., number of pixels

in the image times number of colour bands. The variance-
covariance matrix Σ used in the traditional transformations
is therefore of size p× p, which in the case presented here
is 18 × 18. The Gram matrix on the other hand is of size
n×n, which means it is a huge matrix with a size of the order
millions times millions. This results in an infeasible memory
consumption, when using kernel based transformations.

The solution to the problem adopted here is random sub-
sampling. This means a subset of the data is randomly cho-
sen for the construction of the kernel matrices. The data set
X is therefore reduced to the size of s× p, where s is the
number of samples, before constructing the kernel matrix
KXX , which then has size s× s. This approach will reduce
the memory consumption to a tolerable level, but will also
introduce inconsistency, i.e., the result will potentially be
different when the transformation is applied to other train-
ing samples.

Another solution to the problem of memory consumption
would be to use an iterative method which is slower but uses
less memory. Using this method, it is possible to use all the
pixels to create the transformation which results in consis-
tency. An iterative version of kPCA has been developed by
Kim et al. [KFS05], while the development of iterative ver-
sions of kMNF is left for future research.

The advantage of the kernel based transformations is their

Figure 10. The categories of the multi-spectral image from Figure 3 using PCA, MNF, kPCA or kMNF followed by k-means clustering. 
The k-means clustering algorithm uses the first three factors of the transformations (seen in Figures 5 and 8) and divides the pixels 
into four categories. The four categories corresponds to meat type 1 (dark grey), meat type 2 (grey), fat (light grey) and other (white).
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k-means clustering. The k-means clustering algorithm uses the first three factors of the transformations (seen in Figures 5 and
8) and divides the pixels into four categories. The four categories corresponds to meat type 1 (dark grey), meat type 2 (grey),
fat (light grey) and other (white).
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Figure 11: The categories (meat type 1 (dark grey), meat type 2 (grey), fat (light grey) and other (white)) extracted from four
different multi-spectral images using the developed method which utilises an MNF transformation. The four multi-spectral
images on which the method was applied has been kept in cold storage for the duration depicted in the caption.

ages, taken of pieces of ham which have been kept in cold
storage for up till 38 days, is used to create the graphs in
Figure 12. The graphs depict the change in the median of
each of the ten visible colour bands of meat type 1 (Figure
12(a)) and type meat type 2 (Figure 12(b)). The change in
each of the ten visible colour bands is depicted by a line in
an colour corresponding to the wavelength. Only the visible
colours are of interest since the purpose is to investigate how
the customer sees the change in colour.

7. Discussion

In this section, the results of the four transformations will
be compared and their advantages and disadvantages will be
discussed. Furthermore, the applicability of the procedure
will be evaluated.

The traditional orthogonal transformations have several
advantages compared to the kernel based ones. They are
well established and widely used, which means many peo-
ple know them and more importantly know how to use them.
Furthermore, they are relatively fast and have a small mem-
ory consumption. The latter is especially important when
working with images, since imaging often produces a large
amount of data.

The data matrix X has size n× p, i.e., number of pixels

in the image times number of colour bands. The variance-
covariance matrix Σ used in the traditional transformations
is therefore of size p× p, which in the case presented here
is 18 × 18. The Gram matrix on the other hand is of size
n×n, which means it is a huge matrix with a size of the order
millions times millions. This results in an infeasible memory
consumption, when using kernel based transformations.

The solution to the problem adopted here is random sub-
sampling. This means a subset of the data is randomly cho-
sen for the construction of the kernel matrices. The data set
X is therefore reduced to the size of s× p, where s is the
number of samples, before constructing the kernel matrix
KXX , which then has size s× s. This approach will reduce
the memory consumption to a tolerable level, but will also
introduce inconsistency, i.e., the result will potentially be
different when the transformation is applied to other train-
ing samples.

Another solution to the problem of memory consumption
would be to use an iterative method which is slower but uses
less memory. Using this method, it is possible to use all the
pixels to create the transformation which results in consis-
tency. An iterative version of kPCA has been developed by
Kim et al. [KFS05], while the development of iterative ver-
sions of kMNF is left for future research.

The advantage of the kernel based transformations is their

Figure 11. The categories [meat type 1 (dark grey), meat type 2 (grey), fat (light grey) and other (white)] extracted from four different 
multi-spectral images using the developed method which utilises an MNF transformation. The four multi-spectral images on which the 
method was applied depict ham which have been kept in cold storage for the duration depicted in the caption.
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(a) Meat type 1 (b) Meat type 2

Figure 12: Displays the change in the median colour of each of the two types of meat for each of the visible wavelengths. The
colour of the line corresponds to the colour of the light used to capture the image.

ability to capture non-linear tendencies and enhance details
which are not possible to enhance when using traditional
transformations. This ability is due to the mapping of the
data, where it is possible to choose the kernel function and
fine tune the parameter to fit the patterns of interest.

The advantage of the traditional transformations in terms
of memory consumption, suggests that the kernel based
transformations should be used only when they give a con-
siderably better result. In this case, a better result would be
a substantially better separation between the categories and
thereby a better categorisation. This is not the case as illus-
trated by Figures 9 and 10, where it is seen that differences
between kPCA, kMNF and PCA are not conspicuous. This
suggests that the possible gain of using kernel based meth-
ods in this case is not substantial enough to cope with the
memory consumption and resulting inconsistency.

The difference between PCA and MNF is on the other
hand considerable and it is evident from the smooth cate-
gorisation in Figure 11 that MNF greatly reduces the noise.
That MNF removes noise and not signal is suggested by the
resulting categorisation which has been identified by Flem-
ming Møller from Danisco A/S to resemble an accurate cat-
egorisation. Furthermore, the categorisation achieved by the
method using MNF consists of clustered regions which is
also expected since the meat, fat etc. is expected to be clus-
tered.

In Figure 12, it is seen that especially for wavelengths in
the red part of the spectrum the reflection of light is decreas-
ing significantly as a function of time for both types of meat,
which was also expected. This shows that it is possible to
monitor the change in colour of each type of meat as a func-
tion of time using the described method.

A PCA has been applied to the median colours of the two

Figure 13: A plot of the first and second Principal Compo-
nents, when applying a PCA on the median colours of both
types of meat at ten different points in time. The labels means
meat type x (’mx’) and time point y (’ty’).

types of meat which has been sampled at ten points in time
and each sample consists of 18 spectral bands. The result can
be seen in Figure 13, where it is evident that the first Prin-
cipal Component corresponds to time. It is therefore shown
that the maximum variance in the colour is due to develop-
ment in time and furthermore, it is seen from the coefficient
of the first Principal Component, that the variance is primar-
ily found in the four red spectral bands. The second Principal
Component shows that there is a difference between the two
types of meat and the coefficients indicates that this differ-
ence is primarily in bands 1–7, but the rest of the bands also
has significant contributions.

Figure 12. Displays the change in the median colour of each of the two types of meat for each of the visible wavelengths. The colour of 
the line corresponds to the colour of the light used to capture the image.



A.N. Christiansen et al., J. Spectral Imaging 3, a1 (2012)	 9

for the construction of the kernel matrices. The data set X is 
therefore reduced to the size of s × p, where s is the number 
of samples, before constructing the kernel matrix KXX, which 
then has size s × s. This approach will reduce the memory 
consumption to a tolerable level, but will also introduce incon-
sistency, i.e. the result will potentially be different when the 
transformation is applied to other training samples.

Another solution to the problem of memory consumption 
would be to use an iterative method which is slower but uses 
less memory. Using this method, it is possible to use all the 
pixels to create the transformation which results in consist-
ency. An iterative version of kPCA has been developed by Kim 
et al.,10 while the development of iterative versions of kMNF is 
left for future research.

The advantage of the kernel-based transformations is their 
ability to capture non-linear tendencies and enhance details 
which are not possible to enhance when using traditional 
transformations. This ability is due to the mapping of the data, 
where it is possible to choose the kernel function and fine tune 
the parameter to fit the patterns of interest.

The advantage of the traditional transformations in terms of 
memory consumption, suggests that the kernel-based trans-
formations should be used only when they give a considerably 
better result. In this case, a better result would be a substan-
tially better separation between the categories and thereby 
a better categorisation. This is not the case as illustrated by 
Figures 9 and 10, where it is seen that differences between 
kPCA, kMNF and PCA are not conspicuous. This suggests that 
the possible gain of using kernel-based methods in this case 
is not substantial enough to cope with the memory consump-
tion and resulting inconsistency.

The difference between PCA and MNF is on the other hand 
considerable and it is evident from the smooth categorisation 
in Figure 11 that MNF greatly reduces the noise. That MNF 
removes noise and not signal is suggested by the resulting 

categorisation which has been identified by an expert to 
resemble an accurate categorisation. Furthermore, the cate-
gorisation achieved by the method using MNF consists of 
clustered regions, which is also expected since the meat, fat 
etc. is expected to be clustered.

In Figure 12, it is seen that, especially for wavelengths in 
the red part of the spectrum, the reflection of light decreases 
significantly as a function of time for both types of meat, which 
was also expected. This shows that it is possible to monitor 
the change in colour of each type of meat as a function of time 
using the described method.

A PCA has been applied to the median colours of the two 
types of meat which has been sampled at ten points in time 
and each sample consists of 18 spectral bands. The result can 
be seen in Figure 13, where it is evident that the first principal 
component corresponds to time. It is therefore shown that the 
maximum variance in the colour is due to development in time 
and furthermore, it is seen from the coefficient of the first 
principal component, that the variance is primarily found in 
the four red spectral bands. The second principal component 
shows that there is a difference between the two types of meat 
and that the difference is significant in all the visible bands.

Conclusion
An automatic and thereby objective method, for monitoring the 
change in colour as a function of time in several types of meat, 
has successfully been developed. The method was tested on 
multi-spectral images of pieces of ham which were kept cold 
for up to 38 days and showed great promise with the expected 
result; the colour of the red bands is decreasing over time.

Therefore, this method shows great promise to be able 
to objectively compare the rates of change in colour of ham 
samples which have been kept under different storage condi-
tions or contain different additives. It would thereby be possible 
to determine the effect of environment or additives on the rate 
of change in the colour of meat and thereby selecting the 
optimal environment and additives.

The main focus has been to cluster pixels in multi-spectral 
images into categories representing the two types of meat, fat 
and other. This step is crucial to be able to monitor each type 
of meat and thereby get an accurate estimate of their change 
in colour. The orthogonal transformations PCA, MNF, kPCa 
and kMNF were applied to find the one which both reduces the 
noise and the amount of data, while enhancing the difference 
between the categories.

From the achieved results, it can be concluded that kernel-
based transformations do not give a considerably greater 
difference between categories or reduction of noise compared 
to PCA. The kernel-based methods are therefore not an advan-
tage in this case, especially not when considering their disad-
vantages of, for example, huge memory consumption. The 
results also show that the MNF transformation both reduces 
the noise and amount of data while keeping the information, 
while PCA only achieves the latter. Furthermore, using MNF 
in conjunction with k-means clustering results in accurate 
categorisations according to an expert.
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Figure 12: Displays the change in the median colour of each of the two types of meat for each of the visible wavelengths. The
colour of the line corresponds to the colour of the light used to capture the image.

ability to capture non-linear tendencies and enhance details
which are not possible to enhance when using traditional
transformations. This ability is due to the mapping of the
data, where it is possible to choose the kernel function and
fine tune the parameter to fit the patterns of interest.

The advantage of the traditional transformations in terms
of memory consumption, suggests that the kernel based
transformations should be used only when they give a con-
siderably better result. In this case, a better result would be
a substantially better separation between the categories and
thereby a better categorisation. This is not the case as illus-
trated by Figures 9 and 10, where it is seen that differences
between kPCA, kMNF and PCA are not conspicuous. This
suggests that the possible gain of using kernel based meth-
ods in this case is not substantial enough to cope with the
memory consumption and resulting inconsistency.

The difference between PCA and MNF is on the other
hand considerable and it is evident from the smooth cate-
gorisation in Figure 11 that MNF greatly reduces the noise.
That MNF removes noise and not signal is suggested by the
resulting categorisation which has been identified by Flem-
ming Møller from Danisco A/S to resemble an accurate cat-
egorisation. Furthermore, the categorisation achieved by the
method using MNF consists of clustered regions which is
also expected since the meat, fat etc. is expected to be clus-
tered.

In Figure 12, it is seen that especially for wavelengths in
the red part of the spectrum the reflection of light is decreas-
ing significantly as a function of time for both types of meat,
which was also expected. This shows that it is possible to
monitor the change in colour of each type of meat as a func-
tion of time using the described method.

A PCA has been applied to the median colours of the two

Figure 13: A plot of the first and second Principal Compo-
nents, when applying a PCA on the median colours of both
types of meat at ten different points in time. The labels means
meat type x (’mx’) and time point y (’ty’).

types of meat which has been sampled at ten points in time
and each sample consists of 18 spectral bands. The result can
be seen in Figure 13, where it is evident that the first Prin-
cipal Component corresponds to time. It is therefore shown
that the maximum variance in the colour is due to develop-
ment in time and furthermore, it is seen from the coefficient
of the first Principal Component, that the variance is primar-
ily found in the four red spectral bands. The second Principal
Component shows that there is a difference between the two
types of meat and the coefficients indicates that this differ-
ence is primarily in bands 1–7, but the rest of the bands also
has significant contributions.

Figure 13. A plot of the first and second principal components, 
when applying a PCA on the median colours of both types of 
meat at ten different points in time. The labels means meat 
type x (“mx”) and time point y (“ty”).
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It was also shown that difference in colour between the two 
types of meat is significant in the visible spectrum. It was also 
shown that the change in colour is focused in the red spec-
trum. These results suggest that the categorisation into the 
two types of meat is necessary, if one wants to achieve accu-
rate results in the entire visible spectrum.
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